SERVOSTAR 640...670

Digitaler Servoverstärker S600

Betriebsanleitung

Ausgabe 11/2018 Originalbetriebsanleitung gültig für Hardware Revision 02.20

Befolgen Sie die Anweisungen in diesem Handbuch für eine sichere und ordnungsgemäße Verwendung des Produktes. Bewahren Sie das Handbuch während der Produktlebenszeit auf.

KOLLMORGEN

Bisher erschienene Ausgaben:

Ausgabe	Bemerkung			
07/1999	Erstausgabe			
11/1999	technische Daten, Encoder-Anschlussplan			
12/1999	Encoder Leitungslänge			
10/2000	Maße Filter, Anschlusspläne, elektr. Getriebe, Warn- und Fehlermeldungen erweitert, Anzugsmomente, diverse Korrekturen			
01/2002	Optionen -I/O-14/08- und -2CAN- integriert, Hardware-Beschreibung PROFIBUS und SERCOS integriert, Typenschild, Motorliste, Steckerbelegung korrigiert, LED-Display korrigiert, Fehlermeldungen erweitert, Bremswiderstand BAR durch Typ BAS ersetzt.			
06/2002	neue Umschlagseiten, Motortabelle entfernt, Bestellnummern eingefügt, Anschluss an unterschiedliche Versorgungsnetze neu, Blockdiagramm nach Kapitel III verschoben			
02/2006	neue Umschlagseiten, Firmenname aktualisiert, Erweiterungskarten aktualisiert, DeviceNet neu, EtherCAT neu, SynqNet neu, Kapitel 1 neu strukturiert, Motordrossel, Syntax: Ballastschaltung -> Bremsschaltung, diverse Fehlerkorrekturen, Bestellcodes neu, Rückführeinheiten überarbeitet			
09/2006 Hardware Revision eingeführt, Entsorgung gem. WEEE-2002/96/EG, neue Struktur, Umschlagseiten r Quickstart integriert				
04/2007	Typenschlüssel/Ableitströme/BISS neu, Trouble-Shooting, Systemdarstellung&Netztypen verschoben, Feedback erweitert, Encoder Emulation, Ein-/Ausschaltverhalten&AS überarbeitet, Parallelschaltung Zwischenkreis erweitert, Zubehör entfernt			
07/2007	Timing-Diagramm Motorhaltebremse, Beispiel Kat.3 EN954-1			
06/2008	EG-Konformitätserklärung, Nicht best.gem.Verwendung, Außerbetriebnahme, Hiperface			
08/2008	SCCR->42kA			
07/2010	Logo, Hinweise Haltebremse, HWR 2.10, GOST-R, Reparatur, Entsorgung, Halt-/Nothalt Beispiele ins WIKI, WIKI Links aktualisiert			
12/2010	Firmenname und Addresse, Typenschild, CE-Zertifikat, Faxformular			
12/2014	AS Funktion gem. EN954-1 (nicht mehr funktional sicher), Gost-R entfernt, CE Konformitätserklärung entfernt, HWR, Export Klassifizierung,			
02/2015 Diverse Korrekturen, Hinweise AS, best.gem.Verwendung, Kapitel Sicherungen aktualisiert, UL kings EN+FR				
12/2015	Faxformular entfernt, berührungssichere Spannung 60V->50V, NSR 2014-35-EG, EMVR 2014-30-EG			
07/2016	Kapitel Handhabung erweitert, Warnhinweise aktualisiert, Not-Halt/Not-Aus überarbeitet			
11/2018	Layout Warnhinweise und Lesehinweis Titelseite verändert, Anforderung Fachleute aktualisiert, Wiki geändert zu KDN			

Hardware Revision (HR)

Hardware Rev.	Firmware Rev.	Export Klassifizierung	Bemerkung
02.06	>= 5.99	AL-3A225	Standard
02.06	>=6.68	AL-3A225	mit BiSS Auswertung
00.40	>=7.76	AL-3A225	CAN Controller neu, Standard
02.10	>=6.86	AL-3A225	CAN Controller neu, BiSS/EtherCAT Support
00.00	>= 7.76_ND1	AL-3A225	Neue Datenstruktur, Standard
02.20	>= 6.86_ND1	AL-3A225	Neue Datenstruktur, BiSS/EtherCAT Support
02.20	>= 7.76_ND0	_	Neue Datenstruktur, Standard
02.20	>= 6.86_ND0	-	Neue Datenstruktur, BiSS/EtherCAT Support

WINDOWS ist ein eingetragenes Warenzeichen der Microsoft Corp.

HIPERFACE ist ein eingetragenes Warenzeichen der Max Stegmann GmbH

EnDat ist ein eingetragenes Warenzeichen der Dr. Johannes Heidenhain GmbH

EtherCAT ist ein geschütztes Warenzeichen und patentierte Technologie, lizensiert von Beckhoff Automation GmbH sercos[®] ist ein eingetragenes Warenzeichen des sercos[®] international e.V.

Technische Änderungen, die der Verbesserung der Geräte dienen, vorbehalten!

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung der Firma Kollmorgen Europe GmbH reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Seite

1	Α	llgemeines	
•	1.1	Über dieses Handbuch	. 7
	1.2	Hinweise für die Online-Ausgabe (PDF-Format)	
	1.3	Verwendete Symbole	
	1.4	Verwendete Standards	
	1.5	Verwendete Kürzel	
2		icherheit	
_	2.1	Das sollten Sie beachten	10
	2.2	Bestimmungsgemäße Verwendung	
	2.3	Nicht bestimmungsgemäße Verwendung.	
	2.4	Warnhinweise auf dem Produkt	
3		andhabung	
9	3.1	Transport	1/
	3.2	Verpackung	
	3.3	Lagerung	
	3.4	Außer Betrieb nehmen	
	3.5	Wartung / Reinigung	
	3.6	Demontage	
	3.7	Reparatur	16
	3.8	Entsorgung.	
4		ulassungen	. •
_	4.1	UL und cUL-Konformität	17
	4.2	CE - Konformität.	
	4.3	Europäische Richtlinien und Normen für den Anlagenbauer	
5		roduktidentifizierung	10
J	5.1	Lieferumfang	10
	5.1	Typenschild	
	5.3	Typenschlüssel	
c		• •	20
6		echnische Beschreibung	24
	6.1	Die digitalen Servoverstärker der Familie SERVOSTAR 640/670	
	6.2	Technische Daten	
		2.1 Empfohlene Anzugsmomente	
		2.2 Absicherung 2.3 Umgebungsbedingungen, Belüftung, Einbaulage	
	6.3 6.4	LED-Display	
	6.5	Ansteuerung Motorhaltebremse	
	6.6	Bremsschaltung	
	6.7	Ein- und Ausschaltverhalten.	
		7.1 Verhalten im Normalbetrieb	
		7.2 Verhalten im Fehlerfall (bei Standardeinstellung)	
	6.8	Stopp-/Not-Halt Funktionen nach EN 60204	
		8.1 Stopp	
		8.2 Not-Halt	
		8.3 NOT-AUS.	
	6.9	Berührungsschutz	
		9.1 Ableitstrom	
		9.2 Fehlerstromschutzschalter (FI)	
		9.3 Schutztrenntransformatoren	
7		echanische Installation	55
1	7.1		21
	7.1 7.2	Wichtige Hinweise	
	7.3	Montage	
	7.3 7.4	Ahmessungen	36

Seite

8	Elekti	rische Installation	
		ntige Hinweise	37
		aden zu elektrischen Installation	
		drahtung	
	8.3.1	Technische Daten Anschlussleitungen	
	8.3.2	Schirmanschluss an der Frontplatte	
		ponenten eines Servosystems	
		kschaltbild	
		kerbelegung	
		chlussplan Übersicht	
		nnungsversorgung	
	8.8.1	Anschluss an unterschiedliche Versorgungsnetze	
	8.8.2	Netzanschluss (X0)	
	8.8.3	24V-Hilfsspannung (X4)	
	8.9 Zwis	schenkreis (X0).	
	8.9.1	Externer Bremswiderstand (X0)	
	8.9.2	Kondensatormodule KCM	
	8.10 Moto	oranschluss mit Bremse (X0, X4)	49
		dbackdback	
	8.11.1	Resolver (X2)	
	8.11.2	Sinus Encoder mit BiSS (X1)	52
	8.11.3	Sinus Encoder mit EnDat 2.1 oder HIPERFACE (X1)	53
	8.11.4	Sinus Encoder ohne Datenspur (X1)	54
	8.11.5	Inkrementalgeber / Sinus Encoder mit Hall (X1)	55
	8.11.6	ComCoder (X1)	56
	8.11.7	Inkrementalgeber (X5)	57
	8.12 Elek	tronisches Getriebe, Master-Slave Betrieb	58
	8.12.1	Anschluss an SERVOSTAR-Master, 5V Pegel (X5)	59
	8.12.2	Anschluss an ROD Encoder mit 24V Signalpegel (X3)	59
	8.12.3	Anschluss an Sinus/Cosinus Encoder (X1)	60
	8.12.4	Anschluss an SSI Encoder (X5)	
	8.12.5	Anschluss an Schrittmotor-Steuerungen (Puls-Richtung)	61
		.5.1 Puls/Richtungs-Geber mit 5 V Signalpegel (X5)	
		.5.2 Puls/Richtungs-Geber mit 24V-Signalpegel (X3)	
	8.13 Enc	oder-Emulationen	
	8.13.1	Inkrementalgeber-Ausgabe (X5)	
	8.13.2	SSI-Ausgabe (X5)	
	_	tale und analoge Ein- und Ausgänge	
	8.14.1	Analoge Eingänge (X3)	
	8.14.2	Analoge Ausgänge (X3)	
	8.14.3	Digitale Eingänge (X3)	
	8.14.4	Digitale Ausgänge (X3)	
		32-Schnittstelle, PC-Anschluss (X6)	
		lopen Schnittstelle (X6)	
		deranlaufsperre -AS- nach EN 954-1	
	8.17.1	Wichtige Hinweise	
	8.17.2	Bestimmungsgemäße Verwendung	
	8.17.3	Blockschaltbild	
	8.17.4	Funktionsbeschreibung	
	8.17.5	Signaldiagramm (Ablauf)	
	8.17.6	Funktionsprüfung	
	8.17.7	Anschlussbild (Prinzip).	
	8.17.8	Anwendungsbeispiel Kategorie 1 nach EN954-1	
	8.17		
	8.17		
	8.17.9	Anwendungsbeispiel Kategorie 3 nach EN954-1	
	8.17		
	8.17	.9.2 Hauptstromkreis	76 77
	X 1 /	9.5 ADIADDIADEADIN	//

Seite

9	Inbetri	iebnahme	
		tige Hinweise	78
		riebnahmesoftware.	
	9.2.1	Allgemeines	
	9.2.1		
	9.2.1.		
	9.2.1.		
	9.2.1.		
	9.2.2	Installation unter Windows	
		kstart, Schnelltest des Antriebs.	
	9.3.1	Vorbereitung	
	9.3.2	Verbinden	
	9.3.3	Wichtige Bildschirmelemente.	
	9.3.4	Basiseinstellungen	
	9.3.5	Motor (synchron)	
	9.3.6	Feedback	
	9.3.7	Parameter speichern und Neustart	
	9.3.8	Tippbetrieb (Konstante Drehzahl)	
	9.3.9	Status	
	9.3.10	Monitor	
	9.3.10	Weitere Einstellmöglichkeiten	
		rachssysteme	
	9.4.1	Stationsadresse für CAN-Bus	
	9.4.2	Baudrate für CAN-Bus	
	9.4.3	Anschlussbeispiel Mehrachsensystem.	
		enbedienung / LED-Display.	
	9.5.1	Bedienung	
	9.5.2	Statusanzeige	
	9.5.3	Struktur des Standardmenüs	
	9.5.4	Struktur des detaillierten Menüs.	
		ermeldungen	
		meldungen	
		itigung von Störungen	
10		terungskarten	. 01
	10.1 Leitfa	aden zur Installation der Erweiterungskarten	98
		iterungskarte -I/O-14/08-	
	10.2 Liwe	Frontansicht.	
	10.2.2	Technische Daten	
	10.2.3	Leuchtdioden	
	10.2.4	Fahrsatznummer anwählen (Beispiel)	
	10.2.5	Steckerbelegung	
	10.2.6	Anschlussbild	
		iterungskarte -PROFIBUS	
	10.3.1	Frontansicht	
	10.3.2	Anschlusstechnik	
	10.3.3	Anschlussbild	
		iterungskarte -SERCOS-	
	10.4.1	Frontansicht	
	10.4.2	Leuchtdioden	103
	10.4.3	Anschlusstechnik	103
	10.4.4	Anschlussbild	
	10.4.5	Ändern der Stationsadresse.	
	10.4.6	Ändern von Baudrate und optischer Leistung	
		iterungskarte - DEVICENET	
	IU.U LIWE	· ·	
	10.5 Liwe	Frontansicht	105
		Frontansicht	
	10.5.1		105
	10.5.1 10.5.2	Anschlusstechnik	105 105
	10.5.1 10.5.2 10.5.3	Anschlusstechnik	105 105 106
	10.5.1 10.5.2 10.5.3 10.5.4	Anschlusstechnik	105 105 106 106

		Seite
10.6 Erwe	eiterungskarte -ETHERCAT	
10.6.1	Frontansicht	
10.6.2	LEDs	
10.6.3	Anschlussbild	
10.7 Erwe	eiterungskarte -SYNQNET	109
10.7.1	Frontansicht	109
10.7.2	NODE ID Schalter	109
10.7.3	Node LED Tabelle	109
10.7.4	SynqNet Anschlüsse, Stecker X21B/C (RJ-45)	109
10.7.5	Digitale Ein-/Ausgänge, Stecker X21A (SubD 15 polig, Buchse)	
10.7.6	Anschlussbild digitale Ein-/Ausgänge, Stecker X21A	
10.8 Erwe	eiterungsmodul -2CAN	111
10.8.1	Einbau	
10.8.2	Frontansicht	
10.8.3	Anschlusstechnik	
10.8.4	Anschlussbelegung	
10.8.5	Anschlussbild	
11 Anhar	ng	
11.1 Glos	ssar	
11.2 Best	tellnummern	
11.2.1	Servoverstärker	
11.2.2	Erweiterungskarten	
11.2.3	Gegenstecker	
11.3 Inde	x	

1 Allgemeines

1.1 Über dieses Handbuch

Dieses Handbuch beschreibt die digitalen Servoverstärker der Serie SERVOSTAR 640/670 (Standardausführung). Weitergehende Beschreibung der z.Zt. vorhandenen Erweiterungskarten und der digitalen Anbindung an Automatisierungssysteme und unsere Applikationsschriften finden Sie auf der beiliegenden CD-ROM im Acrobat-Reader-Format (Systemvoraussetzung: WINDOWS und Internet Browser) in mehreren Sprachversionen. Technische Daten und Maßzeichnungen von Zubehör wie Kabel, Bremswiderstände, Netzteile usw. finden Sie im Zubehörhandbuch. Weitere Hintergrundinformationen finden Sie im "Kollmorgen Developer Network", erreichbar unter kdn.kollmorgen.com.

1.2 Hinweise für die Online-Ausgabe (PDF-Format)

Lesezeichen:

Inhaltsverzeichnis und Index sind aktive Lesezeichen.

Inhaltsverzeichnis und Index im Text:

Die Zeilen sind aktive Querverweise. Klicken Sie auf die gewünschte Zeile und die entsprechende Seite wird angezeigt.

Seitenzahlen im Text:

Seitenzahlen/Kapitelzahlen bei Querverweisen sind aktiv. Klicken Sie auf die Seitenzahl/Kapitelzahl um zum angegebenen Ziel zu gelangen.

1.3 Verwendete Symbole

Symbol	Bedeutung
▲ GEFAHR	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen wird.
<u></u> MARNUNG	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen kann.
▲ VORSICHT	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu leichten Verletzungen führen kann.
ACHTUNG	Dies ist kein Sicherheits-Symbol. Weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Beschädigung von Sachen führen kann.
INFO	Dies ist kein Sicherheits-Symbol. Dieses Symbol weist auf wichtige Informationen hin.
	Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
4	Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
	Warnung vor Gefahren durch heiße Oberflächen.
	Warnung vor Gefahren durch hängende Lasten.
	Warnung vor Gefahren durch automatischem Anlauf.

1.4 Verwendete Standards

Standard	Inhalt		
EN 4762	Zylinderschrauben mit Innensechskant		
EN 12100	Sicherheit von Maschinen		
EN 13849	Sicherheitsbezogene Teile von Steuerungen (früher EN954)		
EN 60085	Thermische Bewertung und Bezeichnung von elektrischer Isolation		
EN 60204	Sicherheit und elektrische Ausrüstung von Maschinen		
EN 60364	Low-voltage electrical installations		
EN 60439	Niederspannungs-Schaltgerätekombinationen		
EN 60664	Isolationskoordination für elektrische Betriebsmittel in Niederspannungs-		
EN 60664	anlagen		
EN 60721	Klassifizierung von Umweltbedingungen		
EN 61000	Elektromagnetische Verträglichkeit (EMV)		
EN 61131	Speicherprogrammierbare Steuerungen		
EN 61491	Elektrische Ausrüstung von Industriemaschinen - Serielle Datenverbin-		
LIN 01491	dung für Echtzeit-Kommunikation zwischen Steuerungen und Antrieben		
EN 61508	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektroni-		
LIV 0 1300	scher/programmierbarer elektronischer Systeme		
EN 61800	Elektrische Leistungsantriebssysteme mit einstellbarer Drehzahl		
EN 62061	Funktionale Sicherheit sicherheitsbezogener elektrischer/elektroni-		
LIN 02001	scher/programmierbarer elektronischer Systeme		
EN 82079	Erstellen von Anleitungen		
UL 840	UL Standard for Safety for Insulation Coordination		
UL 508C	UL Standard for Safety Power Conversion Equipment		

EN European Standard

UL Underwriters Laboratories

1.5 Verwendete Kürzel

In der Tabelle unten werden die in diesem Handbuch verwendeten Abkürzungen erklärt.

AGND A	Bedeutung
AGIND /	Analoge Masse
	Wiederanlaufsperre
	Betriebsbereit
CAN Feldbus (CANopen)	
	Communité Europeenne
	Clock (Taktsignal)
	Serielle Schnittstelle eines Personal Computers
	Digitale Masse
	Deutsches Institut für Normung
	Magnetspeicher (Diskette, Festplatte)
	Elektrisch löschbarer Festspeicher
	Elektromagnetische Interferenz
	Elektromagnetische Verträglichkeit
	Europäische Norm
	Entladung statischer Elektrizität
	Stecker für Lichtwellenleiter gem. IEC 60874-2
	International Electrotechnical Commission
	Insulated Gate Bipolar Transistor
	Inkremental Interface
	International Standardization Organization
	Leuchtdiode
KDN Kollmorgen Developer Network	
	Megabyte
	Nullimpuls
NSTOP E	Endschaltereingang Drehrichtung links
	Schutzkleinspannung
	Masse des verwendeten Interfaces
PSTOP E	Endschaltereingang Drehrichtung rechts
PWM F	Pulsweitenmodulation
RAM f	flüchtiger Speicher
R _B E	Bremswiderstand (früher R _{Ballast})
R _{Bext} E	Externer Bremswiderstand
R _{Bint} I	Interner Bremswiderstand
	Resolver
ROD 426 I	Inkrementalger (ROD kompatibel)
	Speicherprogrammierbare Steuerung
SRAM S	Statisches RAM
SSI S	Synchron-Serielles-Interface
	Underwriter Laboratory
	Wechselspannung
	Gleichspannung
	Verein deutscher Elektrotechniker
	Masse der 24V Versorgungsspannung

2 Sicherheit

ACHTUNG

Der S600 ist für das Umsetzen von funktionalen Sicherheitsfunktionen nicht vorgesehen. Die Integration in eine Sicherheitsfunktion nach EN 13849 oder EN 62061 ist unzulässig. Die Funktion STO kann hier nur durch das sichere Trennen der Energieversorgung der Maschine erfolgen.

2.1 Das sollten Sie beachten

Dokumentation lesen

Lesen Sie vor der Montage und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben des Servoverstärkers kann zu Personen- oder Sachschäden führen. Der Betreiber muss daher sicherstellen, dass alle mit Arbeiten am SERVOSTAR 640/670 betrauten Personen das Handbuch gelesen und verstanden haben und dass die Sicherheitshinweise in diesem Handbuch beachtet werden.

Risikobeurteilung erstellen

Der Maschinenhersteller muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können. Aus der Risikobeurteilung leiten sich eventuell auch zusätzliche Anforderungen an das Fachpersonal ab.

Fachpersonal erforderlich

Für Arbeiten wie Transport, Installation, Inbetriebnahme und Instandhaltung darf nur qualifiziertes Personal eingesetzt werden. Qualifiziertes Personal sind Personen, die mit Transport, Installation, Inbetriebnahme von elektrischen Antrieben vertraut sind.

- Transport, Lagerung, Auspacken: nur durch Personal mit Kenntnissen in der Behandlung elektrostatisch gefährdeter Bauelemente.
- Mechanische Installation: nur durch Personal mit Kenntnissen in mechanischen Arbeiten.
- Elektrische Installation: nur durch Personal mit Kenntnissen in elektrotechnischen Arbeiten.
- Inbetriebnahme: nur durch Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik und Antriebstechnik.

Das Fachpersonal muss ebenfalls ISO 12100 / IEC 60364 / IEC 60664 und nationale Unfallverhütungsvorschriften kennen und beachten.

Hardware Revision prüfen

Prüfen Sie die Hardware Revisions-Nummer (siehe Typenschild). Diese Nummer muss mit den Angaben auf der Titelseite dieses Handbuchs übereinstimmen. Wenn die Nummern nicht übereinstimmen, besuchen Sie das Dateiarchiv (http://www.wiki-kollmorgen.eu). Im Download Bereich finden Sie alle Handbuchversionen mit Bezug zur Hardware Revisions-Nummer.

Technische Daten beachten

Halten Sie die technischen Daten und die Angaben zu den Anschlussbedingungen (Typenschild und Dokumentation) ein. Wenn zulässige Spannungswerte oder Stromwerte überschritten werden, können die Servoverstärker geschädigt werden. Ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen die Systemkomponenten. Prüfen Sie die Kombination aus Verstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab.

Elektrostatisch empfindliche Bauteile

Die Servoverstärker enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie den Servoverstärker berühren. Vermeiden Sie den Kontakt mit hochisolierenden Stoffen (Kunstfaser, Kunststofffolien etc.). Legen Sie den Servoverstärker auf eine leitfähige Unterlage.

Automatischer Wiederanlauf

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten.

Wenn der Parameter <u>AENA</u> auf 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten. Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie Kapitel 7.5 der EN60204-1:2006.

Heiße Oberfläche

Während des Betriebes können Servoverstärker heiße Oberflächen besitzen. Die Oberflächentemperatur kann 80°C überschreiten. Gefahr leichter Verbrennungen! Messen Sie die Temperatur und warten Sie, bis der Servoverstärker auf 40°C abgekühlt ist, bevor Sie ihn berühren.

Erdung

Stellen Sie die ordnungsgemäße Erdung des Servoverstärkers mit der PE-Schiene im Schaltschrank als Bezugspotential sicher. Ohne niederohmige Erdung ist keine personelle Sicherheit gewährleistet und es besteht Lebensgefahr durch elektrischen Schlag.

Ableitstrom

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind in Übereinstimmung mit regionalen Vorschriften möglich.

Hohe Spannungen

Die Geräte erzeugen hohe Spannungen bis zu 900 V. Während des Betriebes können Servoverstärker ihrer Schutzart entsprechend spannungsführende, blanke Teile besitzen. Kondensatoren im Servoverstärker führen bis zu fünf Minuten nach Abschalten der Versorgungsspannungen gefährliche Spannungen. Es besteht die Gefahr von Tod oder schweren gesundheitlichen Schäden beim Berühren freiliegender Kontakte. Halten Sie während des Betriebs der Geräte den Schaltschrank und alle Abdeckungen geschlossen. Das Berühren der eingeschalteten Geräte ist nur während der Inbetriebnahme durch qualifiziertes Fachpersonal zulässig.

In ungünstigen Fällen können beim Trennen von Verbindungen Lichtbögen entstehen, da die eingebauten Kondensatoren auch nach Abschalten der Versorgungsspannungen gefährliche Spannungen führen. Verbrennungsgefahr und Gefahr der Erblindung. Lösen Sie die elektrischen Anschlüsse der Servoverstärker nie unter Spannung. Warten Sie nach dem Freischalten der Servoverstärker mindestens fünf Minuten, bevor Sie spannungsführende Geräteteile (z.B. Kontakte) berühren oder Anschlüsse lösen. Messen Sie zur Sicherheit die Spannung im Zwischenkreis und warten Sie, bis die Spannung unter 50V abgesunken ist.

Verstärkte Isolierung

Im Motor eingebaute Temperaturfühler, Motorhaltebremsen und Rückführsysteme müssen mit einer verstärkten Isolierung (gem. EN 61800-5-1) gegenüber Systemkomponenten mit Leistungsspannung versehen sein, entsprechend der geforderten Prüfspannung der Applikation. Alle Kollmorgen Komponenten entsprechen diesen Anforderungen.

Geräte nicht verändern

Veränderung an den Servoverstärker ohne Erlaubnis des Herstellers sind nicht zulässig. Öffnen der Geräte bedeutet Verlust der Gewährleistung und alle Zertifikate der Geräte verlieren ihre Gültigkeit. Am Gehäuse sind Warnsymbole angebracht. Beschädigte Warnsymbole müssen sofort ersetzt werden.

2.2 Bestimmungsgemäße Verwendung

- Die Servoverstärker werden als Komponenten in elektrische Anlagen oder Maschinen eingebaut und dürfen nur als integrierte Komponenten der Anlage in Betrieb genommen werden.
- Der Maschinenhersteller muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.
- Die Servoverstärker der Familie SERVOSTAR 640/670 sind ausschließlich dazu bestimmt, bürstenlose Synchron-Servomotoren drehmoment-, drehzahl- und/oder lagegeregelt anzutreiben. Die Nennspannung der Motoren muss höher oder mindestens gleich der vom Servoverstärker gelieferten Zwischenkreisspannung sein.
- Sie dürfen die Servoverstärker nur im geschlossenen Schaltschrank unter Berücksichtigung der auf Seite 24 definierten Umgebungsbedingungen betreiben. Um die Schaltschranktemperatur unter 45°C zu halten, können Belüftung oder Kühlung erforderlich sein.
- Die Servoverstärker der Serie SERVOSTAR 640/670 (Überspannungskategorie III gem. EN 61800-5-1) werden an dreiphasigen, geerdeten Industrienetzen (TN-Netz, TT-Netz mit geerdetem Sternpunkt, max. 42kA symmetrischer Nennstrom bei 480V +10%) angeschlossen. Für den Anschluss an andere Netze (mit zusätzlichem Trenntransformator) beachten Sie Seite 45.

ACHTUNG

Die Verwendung externer Netzdrosseln und Netzfilter ist erforderlich.

- Periodische Überspannungen zwischen Außenleitern (L1, L2, L3) und Gehäuse des Servoverstärkers dürfen 1000V (Amplitude) nicht überschreiten. Gemäß EN61800 dürfen Spannungsspitzen (< 50µs) zwischen den Außenleitern 1000V nicht überschreiten. Spannungsspitzen (< 50µs) zwischen Außenleitern und Gehäuse dürfen 2000V nicht überschreiten.</p>
- Verwenden Sie nur Kupferleitungen zur Verdrahtung. Die Leiterquerschnitte ergeben sich aus der Norm EN 60204 (bzw. Tabelle 310-16 der NEC 60°C oder 75°C Spalte für AWG Querschnitte).
- Der Servoverstärker SERVOSTAR 640/670 verfügt über keine Sicherheitsfunktion nach EN 61800-5-2. Die Anlaufsperre -AS- ist nicht mit der Sicherheitsfunktion STO gleichzusetzen. Die beschriebene AS Funktion ist nach EN 945-1 abgenommen. Diese Norm ist seit dem 31.12.2012 nicht mehr unter der Maschinenrichtlinie (2006/42/EG) gelistet. Die Anforderungen, die nach EN 945-1 an den Servorverstärker gestellt werden um eine Wiederanlaufsperre umzusetzen, werden weiterhin erfüllt
- Bei Verwendung der Wiederanlaufsperre -AS- beachten Sie die speziellen Vorgaben für die bestimmungsgemäße Verwendung auf Seite 72.

2.3 Nicht bestimmungsgemäße Verwendung

- Eine andere Verwendung als in Kapitel 2.2 beschrieben ist nicht bestimmungsgemäß und kann zu Schäden bei Personen, Gerät oder Sachen führen.
- Der Betrieb des Servoverstärkers in folgenden Umgebungen ist verboten:
 - explosionsgefährdete Bereiche und Umgebungen mit ätzenden und/oder elektrisch leitenden Säuren, Laugen, Ölen, Dämpfen, Stäuben
 - direkt an ungeerdeten oder unsymmetrisch geerdeten Netzen mit U_N >230V.
 - auf Schiffen oder in Off-Shore Anlagen
- Der bestimmungsgemäße Betrieb des Servoverstärkers ist untersagt, wenn die Maschine, in die er eingebaut wurde,
 - nicht den Bestimmungen der EG Maschinenrichtlinie entspricht.
 - nicht die Bestimmung der EMV-Richtlinie erfüllt
 - nicht die Bestimmung der Niederspannungs-Richtlinie erfüllt
- Die Ansteuerung von Haltebremsen durch den SERVOSTAR 640/670 alleine darf nicht in Anwendungen verwendet werden, wo mit der Bremse die personelle Sicherheit gewährleistet werden soll.

2.4 Warnhinweise auf dem Produkt

Vorsicht!
Gefährliche Spannung.
Nach dem Abschalten
5 Minuten warten!

ACHTUNG

Beschädigte Warnsymbole müssen sofort ersetzt werden.

3 Handhabung

3.1 Transport

 Nur von qualifiziertem Personal in der recyclebaren Original-Verpackung des Herstellers

Vermeiden Sie harte Stöße

Temperatur -25...+70°C, max. 20K / Stunde schwankend
 Luftfeuchtigkeit relative Feuchte max. 95% nicht kondensierend

Überprüfen Sie bei beschädigter Verpackung das Gerät auf sichtbare Schäden. Informieren Sie den Transporteur und gegebenenfalls den Hersteller.

ACHTUNG

Die Servoverstärker enthalten elektrostatisch gefährdete Bauelemente, die durch unsachgemäße Behandlung beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie den Servoverstärker direkt berühren. Vermeiden Sie den Kontakt mit hochisolierenden Stoffen (Kunstfaser, Kunststofffolien etc.). Legen Sie den Servoverstärker auf eine leitfähige Unterlage.

3.2 Verpackung

Recyclebarer Karton mit Schaumpolster

Maße: (HxBxT) 410x470x490 mm

Bruttogewicht incl. Zubehör ca. 25 kg

VORSICHT: Hohes Gewicht! Heben ohne Hilfsmittel kann zu Rückenverletzungen führen. Heben und bewegen Sie den Karton nur mit Hilfe von Hebevorrichtungen.

● Kennzeichnung: Geräte-Typenschild außen am Karton

3.3 Lagerung

Lagerung nur in der recyclebaren Originalverpackung des Herstellers

Max. Stapelhöhe 3 Kartons

Lagertemperatur -25...+55°C, max. 20K/Stunde schwankend
 Luftfeuchtigkeit rel. Feuchte 5...95% nicht kondensierend

 Lagerdauer weniger als 1 Jahr: ohne Einschränkung Lagerdauer länger als 1 Jahr: Kondensatoren müssen vor der Inbetriebnahme des Servoverstärkers neu formiert werden. Lösen Sie dazu alle elektrischen Anschlüsse. Speisen Sie dann den Servoverstärker etwa 30min einphasig mit 230V AC an den Klemmen L1 / L2.

3.4 Außer Betrieb nehmen

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten außer Betrieb nehmen.

GEFAHR: Tödliche Spannung! Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Schalten Sie den Hauptschalter des Schaltschranks aus.
- Sichern Sie das System gegen Wiedereinschalten.
- Blockieren Sie den Hauptschalter .
- Warten Sie mindestens 5 Minuten nach Abschalten der Spannung.

3.5 Wartung / Reinigung

Das Gerät ist wartungsfrei. Wenn das Gerät geöffnet wird, erlischt die Garantie. Das Innere des Geräts kann nur vom Hersteller gereinigt werden.

ACHTUNG

Das Gerät nicht in Flüssigkeiten tauchen oder besprühen. Vermeiden Sie, dass Flüssigkeit in das Gerät eindringt.

So reinigen Sie das Gerät von außen:

- 1. Nehmen Sie den Servoverstärker außer Betrieb (siehe Kapitel 3.4).
- 2. Gehäuse: Mit Isopropanol oder einer ähnlichen Reinigungslösung reinigen.

VORSICHT: Leicht Entflammbar! Gefahr von Verletzung durch Verpuffung und Feuer.

- Beachten Sie die Sicherheitshinweise auf der Verpackung des Reinigungsmittels.
- Warten Sie nach der Reinigung mindestens 30 Minuten, bevor Sie den Servoverstärker wieder in Betrieb nehmen.
- 3. Schutzgitter am Lüfter: Mit einer trockenen Bürste reinigen.

3.6 Demontage

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten demontieren.

- 1. Nehmen Sie den Servoverstärker außer Betrieb (siehe Kapitel 3.4).
- 2. Prüfen Sie die Temperatur.

VORSICHT: Hohe Temperatur! Gefahr leichter Verbrennungen. Im Betrieb kann der Kühlkörper Temperaturen über 80 °C erreichen. Bevor Sie den Servoverstärker berühren, messen Sie die Temperatur und warten Sie, bis der Verstärker auf unter 40 °C abgekühlt ist.

- 3. Entfernen Sie die Stecker. Trennen Sie den PE Anschluss zuletzt.
- 4. Ausbauen: Lösen Sie alle Befestigungsschrauben und entfernen Sie das Gerät.

3.7 Reparatur

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten austauschen.

VORSICHT: Unerwarteter Anlauf! Bei der Durchführung von Austauscharbeiten kann es zur Kombination von Gefährdungen und multiplen Folgen kommen.

 Arbeiten sind nur unter Beachtung der Vorschriften für Arbeitssicherheit, durch geschultes Personal und mit Benutzung der jeweils vorgeschriebenen persönlichen Schutzausrüstung zulässig.

Austausch Servoverstärker

Nur der Hersteller kann den Servoverstärker reparieren. Öffnen des Servoverstärkers bedeutet Verlust der Gewährleistung.

- 1. Nehmen Sie den Servoverstärker außer Betrieb (siehe Kapitel 3.4).
- 2. Demontieren Sie den Servoverstärker (siehe Kapitel 3.6).
- 3. Setzen Sie sich mit Kollmorgen in Verbindung und klären Sie die logistische Abwicklung. Schicken Sie das Gerät an die von Kollmorgen angegebene Adresse.
- 4. Installieren Sie ein neues Gerät wie in diesem Handbuch beschrieben.
- 5. Nehmen Sie den Servoverstärker in Betrieb, wie in diesem Handbuch beschrieben.

Austausch sonstiger Teile des Antriebssystems

Wenn Teile des Antriebssystems ausgetauscht werden müssen (zum Beispiel Kabel), gehen Sie wie folgt vor:

- 1. Nehmen Sie den Servoverstärker außer Betrieb (siehe Kapitel 3.4).
- 2. Tauschen Sie die Teile aus.
- 3. Prüfen Sie alle Steckverbindungen auf korrekten Sitz.
- 4. Nehmen Sie den Servoverstärker in Betrieb, wie in diesem Handbuch beschrieben.

3.8 Entsorgung

ACHTUNG

Für die fachgerechte Entsorgung des Gerätes wenden Sie sich an einen zertifizierten Elektronikschrottverwerter.

Gemäß der WEEE-2012/19/EG-Richtlinien nehmen wir Altgeräte und Zubehör zur fachgerechten Entsorgung zurück, sofern die Transportkosten vom Absender übernommen werden.

Nehmen Sie dann den Servoverstärker wie in Kapitel 3.4 beschrieben außer Betrieb und demontieren Sie ihn wie in Kapitel 3.6 beschrieben.

Setzen Sie sich mit Kollmorgen in Verbindung und klären Sie die logistische Abwicklung. Schicken Sie das Gerät an die von Kollmorgen angegebene Adresse.

4 Zulassungen

Zertifikate finden Sie im Download Bereich des Dateiarchiv.

4.1 UL und cUL-Konformität

Dieser Servoverstärker ist unter der UL File Nummer E217428 gelistet.

UL(cUL)-zertifizierte Servoverstärker (Underwriters Laboratories Inc.) stimmen mit den entsprechenden amerikanischen und kanadischen Brandvorschriften (in diesem Fall UL 840 und UL 508C) überein.

Die UL(cUL)-Zertifizierung bezieht sich allein auf die konstruktive mechanische und elektrische Baucharakteristik des Gerätes.

Die UL(cUL)-Vorschriften legen u.a. die technischen Mindestanforderungen an elektrische Geräte fest, um gegen mögliche Brandgefahren vorzubeugen, die von elektrisch betriebenen Geräten ausgehen können.

Die technische Übereinstimmung mit den amerikanischen Brandvorschriften wird von einem unabhängigen UL-Inspektor durch die Typenprüfung und regelmäßigen Kontroll-prüfungen auf Konformität überprüft.

Der Kunde hat bis auf die in der Dokumentation zu beachtenden Installations- und Sicherheitshinweise keinerlei andere Punkte zu beachten, die im direktem Zusammenhang mit der UL(cUL)-Gerätezertifizierung stehen.

UL 508C: Die UL 508C beschreibt die konstruktive Einhaltung von Mindestanforderungen an elektrisch betriebene Leistungsumwandlungsgeräte wie Frequenzumrichter und Servoverstärker, die das Risiko einer Brandentwicklung durch diese Geräte verhindern sollen.

UL 840: Die UL 840 beschreibt die konstruktive Einhaltung der Luft- und Kriechstrecken von elektrischen Geräten und Leiterplatinen.

Ма	rkings	Ма	rquages
•	Use 60°C or 75°C copper wire only.	•	Utilisez un fil en cuivre 60°C ou 75 °C min
•	Use Class 1 wire only.	•	Utilisez seulement un fil de classe 1.
	Tightening torque for field wiring terminals. X0: 6 to 8 Nm (53.10 to 70.81 lbf in).	•	Couples de serrage recommandée X0: 6 to 8 Nm (53.10 to 70.81 lbf in).
	Use in a pollution degree 2 environment.	•	Utilisation dans un environnement de pollution de niveau 2.
	These devices provide solid state motor overload protection at 130% of full load current.	•	Ces variateurs offrent une protection contre les surcharges de moteur à semi-conducteur à 130 % du courant FLA nominal.
	These devices are not provided with motor over-temperature sensing.	•	Ces variateurs n'offrent pas de capteurs de température excessive.
•	Suitable for use on a circuit capable of delivering not more than 42kA rms symmetrical amperes for a max. voltage of 480 Vac, when protected by Class RK5 fuses.	•	Ce produit est conçu pour une utilisation sur un circuit capable de fournir 42 000 ampè- res symétriques (rms) maximum pour 480V, lorsqu'il est protégé par classe RK5 fusibles
)	Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.	•	Une protection de court-circuit à semi-con- ducteur intégrale ne fournit pas de protecti- on de la dérivation. Il convient de garantir une protection de la dérivation conforme au NEC (National Electrical Code) et aux régle- mentations locales en vigueur, ou aux direc- tives équivalentes applicables.
	Rating of external Branch Circuit Fuses: Class RK5, 50A, 480V min (S6400) or	•	Fusibles externes de circuit de dérivation: Classe RK5, 50A, 480V min (S6400) ou

Class RK5, 80A, 480V min (S6700)

Classe RK5, 80A, 480V min (S6700)

4.2 CE - Konformität

Die Servoverstärker wurden in einem definierten Aufbau mit den in dieser Dokumentation beschriebenen Systemkomponenten geprüft. Abweichungen von in der Dokumentation beschriebenen Aufbau und Installation bedeuten, dass Sie selbst neue Messungen veranlassen müssen, um der Gesetzeslage zu entsprechen.

Kollmorgen erklärt die Konformität der Produkte SERVOSTAR 640 (S640) und SERVOSTAR 670 (S670) mit folgenden einschlägigen Bestimmungen:

- EG-Richtlinie 2014/30/EG, Elektromagnetische Verträglichkeit
- EG-Richtlinie 2014/35/EG, Niederspannungsrichtlinie

In Bezug auf die Störfestigkeit erfüllt der Servoverstärker die Anforderung an die Kategorie "zweite Umgebung" (Industrieumgebung).

Für den Bereich der Störaussendung erfüllt der Servoverstärker die Anforderung an ein Produkt der Kategorie C2 (Motorleitung ≤ 25m). Bei einer Motorleitungslänge größer als 25m erfüllt der Servoverstärker die Anforderung an die Kategorie C3.

ACHTUNG

In einer Wohnumgebung kann dieses Produkt hochfrequente Störungen verursachen, die Entstörmaßnahmen erforderlich machen können.

4.3 Europäische Richtlinien und Normen für den Anlagenbauer

Servoverstärker sind unvollständige Maschinen, die zum Einbau in elektrische Anlagen/Maschinen im Industriebereich bestimmt sind. Bei Einbau in Maschinen/Anlagen ist die Aufnahme des bestimmungsgemäßen Betriebes des Servoverstärkers solange untersagt, bis festgestellt wurde, dass die Maschine/Anlage den Bestimmungen der

EG-Maschinenrichtlinie (2006/42/EG)
 EG-EMV-Richtlinie (2014/30/EG)
 EG-Niederspannungsrichtlinie (2014/35/EG)

Normen zur Einhaltung der EG-Maschinenrichtlinie (2006/42/EG)

EN 60204-1 (Sicherheit und elektrische Ausrüstung von Maschinen)

EN 12100 (Sicherheit von Maschinen)

ACHTUNG

Der Maschinenhersteller muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.

Der Maschinen- / Anlagenhersteller muss prüfen, ob bei seiner Maschine/ Anlage noch weitere oder andere Normen oder EG- Richtlinien anzuwenden sind.

Normen zur Einhaltung der EG-Niederspannungsrichtlinie (2014/35/EG):

EN 60204-1 (Sicherheit und elektrische Ausrüstung von Maschinen)

EN 60439-1 (Niederspannungs-Schaltgerätekombinationen)

Normen zur Einhaltung der EG-EMV-Richtlinie (2014/30/EG):

EN 61000-6-1 / 2 (Störfestigkeit im Wohn-/ Industriebereich)

EN 61000-6-3 / 4 (Störaussendung im Wohn-/ Industriebereich)

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte der Anlage/Maschine liegt in der Verantwortung des Herstellers der Anlage/Maschine. Hinweise für die EMV-gerechte Installation (wie Schirmung, Erdung, Handhabung von Steckern und Verlegung der Leitungen) finden Sie in dieser Dokumentation.

Die Konformität des Servosystems zu den hier genannten Normen können wir nur garantieren, wenn von uns gelieferte Komponenten (Motor, Leitungen, Drosseln usw.) verwendet werden.

5 Produktidentifizierung

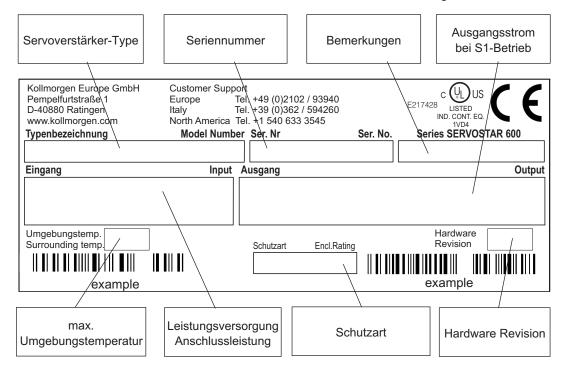
5.1 Lieferumfang

Wenn Sie Verstärker aus der Serie SERVOSTAR 640/670 bei uns bestellen (Bestellnummern ⇒ S.115), erhalten Sie:

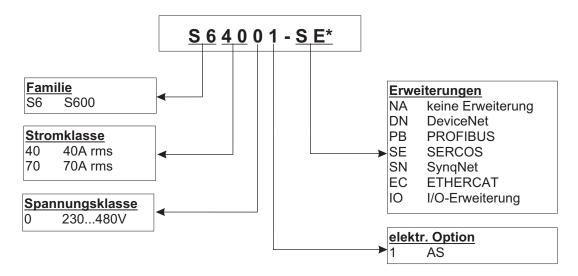
- SERVOSTAR 640/670
- Gegenstecker X3, X4

INFO

Die SubD-Gegenstecker gehören nicht zum Lieferumfang!


- Montage- und Installationsanleitung (Betriebsanleitung)
- Online-Dokumentation auf CD-ROM
- Inbetriebnahmesoftware DRIVE.EXE auf CD-ROM

Zubehör: (muss zusätzlich bestellt werden; Beschreibung siehe Zubehörhandbuch)


- Netzfilter 3EF erforderlich
- Netzdrossel 3L erforderlich
- Synchron-Servomotor linear oder rotatorisch
- Motorleitung als Meterware
- Bremsleitung als Meterware
- Rückführleitung (konfektioniert) oder beide Rückführstecker einzeln mit Kabel als Meterware
- externer Bremswiderstand BAS meist erforderlich
- Kommunikationsleitung zum PC (⇒ S.69) oder Y-Adapter (⇒ S.91) für das Parametrieren von bis zu 6 Servoverstärkern an einem PC
- Netzleitung, Steuerleitungen, Feldbusleitungen (jeweils Meterware)

5.2 Typenschild

Das unten abgebildete Typenschild ist seitlich auf dem Servoverstärker angebracht. In die einzelnen Felder sind die unten beschriebenen Informationen eingedruckt.

5.3 Typenschlüssel

^{*} zusätzliche Kodierung definiert kundenspezifische Besonderheiten.

Gegenüberstellung (ohne Erweiterung) Gerätename -> Typenbezeichnung

Gerätename	Туре
SERVOSTAR 640	S64001-NA
SERVOSTAR 670	S67001-NA

Technische Beschreibung 6

6.1 Die digitalen Servoverstärker der Familie SERVOSTAR 640/670

Standardausführung

- 2 Stromstärken (40 A, 70 A)
- Nennspannungsbereich (3x208V_{-10%} bis 3x480V^{+10%})
- Überspannungskategorie III gem. EN 61800-5-1
- Schirmanschluss direkt am Servoverstärker
- CANopen integriert (Vorgabe: 500 kBaud), für Integration in CAN-Bus Systeme und für die Parametrierung mehrerer Verstärker über die PC-Schnittstelle eines Verstär-
- RS232 integriert, potentialgetrennt, Puls-Richtungs-Schnittstelle integriert
- -AS- Wiederanlaufsperre nach EN 954-1, (⇒ S.70)
- Steckplatz für eine Erweiterungskarte
- Anschluss von Synchron-Servomotoren, Linearmotoren, Asynchronmotoren

Leistungsversorgung

Mit externem Netzfilter und Netzdrossel am geerdeten 3~ Netz,

230V_{-10%} ... 480V^{+10%}, 50 Hz, 208V_{-10%} ... 480V^{+10%}, 60 Hz,

TN-Netz und TT-Netz mit geerdetem Sternpunkt, max. 42kA symmetrischer Nennstrom. Anschluss an andere Netze nur mit Trenntransformator, ⇒ S. 45

INFO

Für den Export in Länder mit UL/cUL Standards beachten Sie die zusätzlichen Angaben in der englischen Ausgabe dieses Handbuchs.

- B6-Gleichrichterbrücke am dreiphasigen, geerdeten Netz, Anlaufschaltung integriert
- Absicherung (z.B. Schmelzsicherung) durch den Anwender

alle Schirmanschlüsse direkt am Verstärker Schirmung: Endstufe: IGBT-Modul mit potentialfreier Strommessung

mit dynamischer Verteilung der Bremsleistung auf mehrere Bremsschaltung:

Verstärker am gleichen Zwischenkreis, externer Brems-

widerstand

- Zwischenkreisspannung 260...900 V DC, parallelschaltfähig
- Interner Entstörfilter für die 24V-Hilfsspannungsversorgung (für Kategorie C2)

INFO

Externer Entstörfilter für die Leistungseinspeisung (für Kategorie C2) erforderlich. Externe Netzdrossel zur Reduktion der Netzoberwellen erforderlich.

Integrierte Sicherheit

- Elektrisch sichere Trennung zwischen Netz- bzw. Motoranschluss und der Signalelektronik durch entsprechende Kriechwege und vollständige Potentialtren-
- Sanfteinschaltung, Überspannungs-Erkennung, Kurzschlussschutz, Phasenausfallüberwachung
- Temperaturüberwachung von Servoverstärker und Motor (bei Verwendung unserer Motoren mit unseren fertig konfektionierten Kabeln)

Hilfsspannungsversorgung 24V DC

Potentialgetrennt, aus einem externen 24V DC-Netzteil, z.B. mit Trenntransformator oder USV

Bedienung und Parametrierung

- Mit der komfortablen Kollmorgen-Inbetriebnahmesoftware über die serielle Schnittstelle eines Personal Computers (PC)
- Notbedienung über zwei Tasten direkt am Servoverstärker und dreistellige LED-Anzeige zur Statusanzeige
- Voll programmierbar über RS232-Interface

Vollständig digitale Regelung

- digitaler Stromregler (Raumzeiger Pulsweitenmodulation, 62,5 μs)
- frei programmierbarer digitaler Drehzahlregler (62,5 μs oder 250 μs)
- integrierter Lageregler mit Anpassungsmöglichkeiten an jede Aufgabe (250 μs)
- Puls-Richtungs-Schnittstelle integriert zum Anschluss eines Servomotors an eine Schrittmotorsteuerung
- Auswertung der Resolversignale bzw. der sinus-cosinus-Signale eines hochauflösenden Encoders
- Encoder-Emulation (inkrementell ROD 426 kompatibel oder SSI)

Komfortfunktionen

- 2 analoge Monitorausgänge
- 4 programmierbare digitale Eingänge
- 2 programmierbare digitale Ausgänge
- Frei programmierbare Verknüpfungen aller digitalen Meldungen

Erweiterungen

- I/O-14/08 Erweiterungskarte, ⇒ S.99
- PROFIBUS DP Erweiterungskarte, ⇒ S.102
- SERCOS Erweiterungskarte, ⇒ S.103
- DeviceNet Erweiterungskarte, ⇒ S. 105
- EtherCAT Erweiterungskarte, ⇒ S. 108
- SyngNet Erweiterungskarte, ⇒ S. 109
- Erweiterungskarten von Drittanbietern (ModBus, FireWire, LightBus etc. wenden Sie sich für weitere Informationen an den Hersteller)

6.2 Technische Daten

Nenndaten	DIM	SERVOSTAR 640	SERVOSTAR 670			
Nenn-Anschlussspannung (L1,L2,L3)		3 x 230V-10%	480V+10%, 50 Hz			
		3 x 208V-10%	480V+10%, 60 Hz			
Nenn-Anschlussleistung für S1-Betrieb		30	50			
Nenn-Zwischenkreisgleichspannung	V=	290	675			
Nenn-Ausgangsstrom (Effektivwert, ± 3%)						
bei 230V	Arms	40	85			
bei 400V	Arms	40	80			
bei 480V	Arms	40	70			
Spitzen-Ausgangsstrom (max. ca. 5s, ± 3%)						
bei 230V	Arms	80	160			
bei 400V	Arms	80	160			
bei 480V	Arms	80	140			
Taktfrequenz der Endstufe	kHz		8			
Techn. Daten Bremsschaltung		⇒	S.27			
Abschaltschwelle bei Überspannung	V		900			
Formfaktor des Ausgangsstromes						
(bei Nenndaten und Mindestlastinduktivität)	-	1	,01			
Bandbreite des unterlagerten Stromreglers	kHz	>	1,2			
Restspannungsabfall bei Nennstrom	V		5			
Ruheverlustleistung, Endstufe disabled	W		40			
Verlustleistung bei Nennstrom (inkl.Netzteil-						
Verlustleistung ohne Brems-Verlustleistung)	W	400	700			
Eingänge						
Sollwert 1/2, Auflösung 14bit/12bit	V	±10				
Gleichtaktspannung max.	V	+	:10			
Eingangswiderstand	kΩ 20					
	V		low 07 / high 1236			
Digitale Steuereingänge	mA	1000 01 7	7			
	V	ma	max. 30			
Digitale Steuerausgänge, open collector	mA	10				
	V					
BTB/RTO-Ausgang, Relaiskontakte	mA		DC max. 30, AC max 42			
Lilfoonannungovaraargung notontialgatronnt		500				
Hilfsspannungsversorgung, potentialgetrennt	V	24 (-0% +15%)				
ohne Bremse	A	2 (max. 16)				
Hilfsspannungsversorgung, potentialgetrennt	V		24 (-0% +15%)			
mit Bremse (Spannungsverluste beachten!)	Α	,	ax. 16)			
min./max. Ausgangsstrom Bremse	A	0,7	75 / 3			
Anschlüsse						
Steuersignale			18 polig , 2,5mm²			
Leistungssignale	_		mm² – 50 mm²			
Resolver-Eingang			ol. (Buchse)			
Inkrementalgeber-Eingang			ol. (Buchse)			
PC-Schnittstelle, CAN			ol. (Stecker)			
Encoder-Emulation, ROD/SSI			ol. (Stecker)			
Thermoschutz Motor		min. 15V	DC / 5 mA			
Mechanik						
Gewicht	kg	19,5	21			
Höhe ohne Schirmblech ohne Ösen / mit Ösen	mm	345 / 375				
Höhe mit Schirmblech ohne Ösen / mit Ösen		484	/ 495			
Breite	mm	2	250			
Tiefe ohne Stecker	mm	300				
Tiefe mit Steckern	mm	325				

6.2.1 Empfohlene Anzugsmomente

Stecker	Anzugsmoment
X3, X4	0,3 Nm
X10	0,3 Nm
X0	6-8 Nm

6.2.2 Absicherung

Tipps und Hintergundinformationen finden Sie im KDN auf der Seite "Sicherungen".

Interne Absicherung

Schaltkreis	Interne Absicherung	
Hilfsspannung 24V	4 AT	
Bremswiderstand	elektronisch	

Externe Absicherung

Schmelzsicherungen o.ä.	SERVOSTAR 640	SERVOSTAR 670
AC-Einspeisung F _{N1/2/3}	50 A*	80 A*
Bremswiderstand F _{B1/2}	16 A**	20 A**

- * Europäische Typen: gRL oder gL 400V/500V
 US Typen: Sicherungsklassen RK5, 600VAC 200kA, time-delay
- ** Europäische Typen: Bussmann HLS, 690V US Typen: Bussmann FWP-xxA14F, Size 14x51mm mit 800Vdc UL-Zulassung

6.2.3 Umgebungsbedingungen, Belüftung, Einbaulage

Lagerung, Hinweise	⇒ S.14	
Transport, Hinweise	⇒ S.14	
Toleranz Versorgungsspannungen Leistungsversorgung Hilfsspannungsversorgung 230480V Soltz	min 3x230V _{-10%} AC / max 3x 480V ^{+10%} , 50 Hz min 3x208V _{-10%} AC / max 3x 480V ^{+10%} , 60 Hz 24 V DC (-0% +15%), Spannungsverlust be- achten	
Umgebungstemperatur im Betrieb	0+45°C bei Nenndaten +45+55°C mit Leistungsrücknahme 2,5% / K	
Luftfeuchtigkeit im Betrieb	rel. Luftfeuchte 85%, nicht betauend	
Aufstellhöhe	bis 1000m über NN ohne Einschränkung 10002500m über NN mit Leistungsrücknah- me 1,5% / 100m	
Verschmutzungsgrad	Verschmutzungsgrad 2 nach EN 60664-1	
Schwingungen	Klasse 3M1 nach IEC 60721-3-3	
Geräuschemission	max. 45 dB(A)	
Schutzart	IP 20 nach EN60529	
Einbaulage	generell vertikal. ⇒S.35	
Belüftung	Zwangsbelüftet durch interne Lüfter	
Sorgen Sie im geschlossenen Schaltschrank für ausreichende erzwungene Umluft.		

ACHTUNG

6.2.4 Leiterquerschnitte

Beachten Sie die technische Daten der Anschlussleitungen ⇒ S.40. Wir empfehlen im Rahmen der EN 60204 für Einachssysteme:

vii emplemen in Rannen der Er	1 00204 full Elliachssysteme .	
AC-Anschluss	25 mm², zwischen Filter und Verstärker abgeschirmt, 600V, 80°C	
DC-Zwischenkreis	25 mm², bei Längen größer 20 cm abgeschirmt, 1000V, 80°C	
Motorleitungen	⇒ S.49, Querschnitt siehe Motorhandbuch, max. 50m*, Kapazität <250pF/m, 600V, 80°C	
Resolver, Thermoschutz-Motor	4x2x0,25 mm² paarw. verseilt, geschirmt, max.100m*, Kapazität <120pF/m	
Encoder, Thermoschutz-Motor	7x2x0,25 mm² paarw. verseilt, geschirmt, max. 50m*, Kapazität <120pF/m	
Sollwerte, Monitore, AGND	0,25 mm², paarweise verseilt, abgeschirmt	
Steuersignale, -AS-, BTB, DGND	0,5 mm²	
Haltebremse (Motor)	min. 1,5 mm², 600V, 80°C, abgeschirmt, Spannungsverlust beachten	
+24 V / XGND	max. 2,5 mm², Spannungsverlust beachten	
Bremswiderstand	⇒ S.47, min. 10mm², abgeschirmt, 1000V, 80°C	
Bei Mehrachssystemen beachten Sie die speziellen Betriebsbedingungen Ihrer Anlage		
NA	alternative Marketalantender and Acceptance	

ACHTUNG

Max. Längen nur bei strikter Einhaltung der Materialanforderungen ⇒ S.40.

6.3 **LED-Display**

Ein dreistelliges LED-Display meldet nach dem Einschalten der 24V-Versorgung den Verstärkerstatus (⇒ S.94). Bei der Bedienung/Parametrierung des Verstärkers über die Tastatur in der Frontplatte werden die Parameter- und Funktionsnummern (⇒ S.94) sowie bei auftretenden Fehlern die Fehlernummer angezeigt (⇒ S.95).

6.4 Masse-System

AGND — Bezug für analoge Ein-/Ausgänge, interne Analog-Masse

DGND — Bezug für digitale Ein-/Ausgänge, optisch entkoppelt

XGND — Bezug für externe 24V-Hilfsspannung, optisch und induktiv entkoppelt

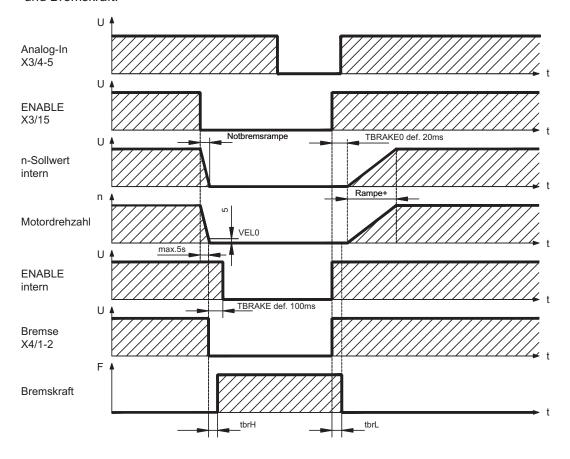
PGND — Bezug für Encoder-Emulation, RS232, CAN, RPOFIBUS, optisch entkoppelt

Im Blockschaltbild sind die Potentialtrennungen dargestellt (⇒ S. 42).

^{*} Kollmorgen Nord Amerika liefert Kabel bis zu 39m Länge, Europa bis zur maximalen Länge.

6.5 Ansteuerung Motorhaltebremse

Eine 24 V / max.3 A-Haltebremse im Motor kann direkt vom Servoverstärker angesteuert werden.


⚠ VORSICHT Keine funktionale Sicherheit!

Gefahr durch herabfallende Lasten bei hängenden Lasten (Vertikalachsen). Für funktionale Sicherheit muss eine zusätzliche mechanische Bremse verwendet werden, die sicher angesteuert wird.

ACHTUNG

Die Bremse arbeitet nur bei ausreichender Spannungsversorgung (⇒ S.24). Beachten Sie den Spannungsverlust, messen Sie die Spannung am Bremseneingang und prüfen Sie die Bremsenfunktion (Lösen und Bremsen).

Die Bremsfunktion müssen Sie über den Parameter BREMSE (Bildschirmseite Motor) freigeben: Einstellung MIT. Im unten dargestellten Diagramm sehen Sie den zeitlichen und funktionellen Zusammenhang zwischen ENABLE-Signal, Drehzahlsollwert, Drehzahl und Bremskraft.

Während der internen Freigabeverzögerung von 100ms (DECDIS) wird der Drehzahlsollwert des Servoverstärkers intern mit einer Rampe von 10ms gegen 0 gefahren. Bei Erreichen von 5 U/min (VELO) Drehzahl oder spätestens nach 5s (EMRGTO) schaltet der Bremsenausgang.

Die Anstiegszeiten (f_{brH}) und Abfallzeiten (f_{brL}) der im Motor eingebauten Haltebremse sind für die einzelnen Motortypen unterschiedlich (siehe Motorhandbuch).

Eine Beschreibung der Schnittstelle finden Sie auf Seite 49.

6.6 Bremsschaltung

Beim Bremsen mit Hilfe des Motors wird Energie zum Servoverstärker zurückgespeist. Diese Energie wird im Bremswiderstand in Wärme umgewandelt. Der Bremswiderstand wird von der Bremsschaltung zugeschaltet. Mit Hilfe der Inbetriebnahmesoftware wird die Bremsschaltung (Schaltschwellen) an die Netzspannung angepasst. Bei der Berechnung der erforderlichen Bremsleistung für Ihre Anlage hilft Ihnen unsere Applikationsabteilung. Bei der Berechnung der erforderlichen Bremsleistung für Ihre Anlage hilft Ihnen unsere Applikationsabteilung. Eine Näherungsmethode finden Sie im "KDN". Eine Beschreibung der Schnittstelle finden Sie auf Seite 47.

Funktionsbeschreibung:

1. Einzelverstärker, nicht gekoppelt über den Zwischenkreis (DC+, DC-)

Die Schaltung beginnt bei einer Zwischenkreisspannung von 400V, 720V bzw. 840V (je nach Netzspannung) anzusprechen.

Ist die vom Motor rückgespeiste Leistung im zeitlichen Mittel oder als Spitzenwert höher als die eingestellte Bremsleistung, meldet der Servoverstärker den Status "Bremsleistung" überschritten, die Bremsschaltung schaltet sich ab.

Bei der nächsten internen Prüfung der Zwischenkreisspannung (nach wenigen ms) wird eine Überspannung erkannt und der Servoverstärker wird mit der Fehlermeldung "Überspannung" abgeschaltet (⇒ S.95).

Der BTB-Kontakt (Klemmen X3/2,3) wird gleichzeitig geöffnet (⇒ S.68).

2. Mehrere Servoverstärker **gekoppelt** über den Zwischenkreis (DC+, DC-)

Durch die eingebaute Bremsschaltung mit patentierter w-Kennlinie können ohne Zusatzmaßnahmen mehrere Verstärker auch unterschiedlicher Stromstärken an einem gemeinsamen Zwischenkreis betrieben werden. Dies geschieht durch selbständige Anpassung der unterschiedlichen (toleranzbehafteten) Bremsschwellen. Die Bremsenergie wird gleichmäßig auf alle Verstärker verteilt. Sowohl für die Spitzen- als auch für die Dauerleistung stehen stets die **Summenleistungen** aller Verstärker zur Verfügung. Die Abschaltung bei Überspannung erfolgt wie unter 1. beschrieben beim Servoverstärker mit der toleranzbedingt niedrigsten Abschaltschwelle. Der BTB-Kontakt dieses Servoverstärkers (Klemmen X3/2,3) wird gleichzeitig geöffnet (⇒ S.68).

Technische Daten Bremsschaltung			SERVOSTAR	
Netz- spannung	Nenndaten	DIM	640	670
	Externer Bremswiderstand	Ohm	15	10
	Obere Einschaltschwelle Bremsschaltung	V	400 - 430	
3 x 230 V	Abschaltschwelle Bremsschaltung	V	380 - 410	
3 X 230 V	Überspannung F02	V	450	
	Dauerleistung Bremsschaltung (R _{Bext}) max.	kW	6	
	Impulsleistung Bremsschaltung (R _{Bext} max. 1s)	kW	10	16
	Externer Bremswiderstand	Ohm	15	10
	Obere Einschaltschwelle Bremsschaltung	V	720 - 750	
3 x 400 V	Abschaltschwelle Bremsschaltung	V	680 - 710	
3 X 400 V	Überspannung F02	V	800	
	Dauerleistung Bremsschaltung (R _{Bext}) max.	kW	6	
	Impulsleistung Bremsschaltung (R _{Bext} max. 1s)	kW	35	50
	Externer Bremswiderstand	Ohm	15	10
	Obere Einschaltschwelle Bremsschaltung	V	840 - 870	
2 × 400 \/	Abschaltschwelle Bremsschaltung	V	800 - 830	
3 x 480 V	Überspannung F02	V	900	
	Dauerleistung Bremsschaltung (R _{Bext}) max.	kW	6	
	Impulsleistung Bremsschaltung (R _{Bext} max. 1s)	kW	45	70

Passende externe Bremswiderstände finden Sie in unserem Zubehörhandbuch.

INFO

6.7 Ein- und Ausschaltverhalten

Dieses Kapitel beschreibt das Verhalten des SERVOSTAR beim Ein-/Ausschalten und die erforderlichen Maßnahmen zum Erreichen normgemäßen Verhaltens beim betriebsmäßigen Stopp oder bei Not-Halt.

INFO

Für diese Funktionalität muss die 24V-Versorgung des Servoverstärkers erhalten bleiben. Mit den ASCII Befehlen <u>ACTFAULT</u> (Reaktion auf Fehler, hängt auch ab vom jeweiligen Fehler, siehe auch <u>ERRCODE</u>) und <u>STOPMODE</u> (Reaktion auf Enable-Signal) wird festgelegt, wie der Antrieb sich verhält.

STOPMODE		Verhalten (siehe auch ASCII Referenz in der Online Hilfe der Inbetriebnahmesoftware)
0 (default)	0	Motor trudelt ungeregelt aus
1	1 (default)	Motor wird geführt gebremst

Verhalten bei Netzausfall

Die Servoverstärker erkennen den Ausfall von einer oder mehreren Netzphasen (Leistungseinspeisung) über eine integrierte Schaltung.

Das Verhalten des Servoverstärkers wird mit Hilfe der Inbetriebnahmesoftware eingestellt: auf der Bildschirmseite **Basiseinstellungen** wählen Sie bei **"Aktionen bei Verlust einer Netzphase"**:

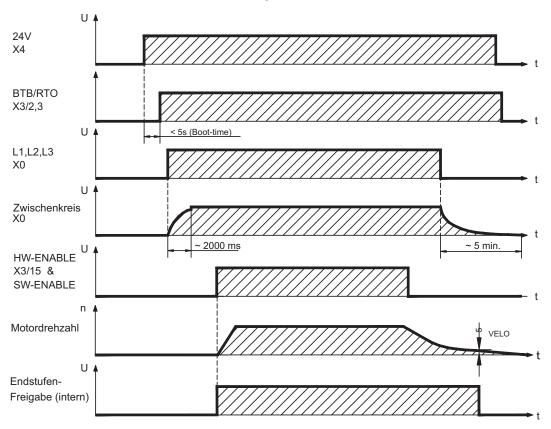
- Warnung, wenn die übergeordnete Steuerung den Antrieb stillsetzen soll: Das Fehlen einer Netzphase wird als Warnung gemeldet (Display, n05) und der Motorstrom wird begrenzt. Der Servoverstärker wird nicht disabled. Die übergeordnete Steuerung kann den aktuellen Zyklus gezielt beenden oder die Stillsetzung des Antriebs einleiten. Dazu wird die Fehlermeldungen "NETZ-BTB, F16" auf einen digitalen Ausgang des Servoverstärkers gelegt und von der Steuerung ausgewertet.
- Fehlermeldung, wenn der Servoverstärker den Antrieb stillsetzen soll: Das Fehlen einer Netzphase wird als Fehler gemeldet (Display, F19). Der Servoverstärker wird disabled, der BTB-Kontakt öffnet. Der Motor wird bei unveränderter werksseitiger Einstellung (ACTFAULT=1) mit der eingestellten "NOTRAMPE" abgebremst.

Verhalten bei Erreichen der Unterspannungsschwelle

Bei Unterschreitung der Unterspannungsschwelle (Wert ist abhängig vom Typ des Servoverstärkers) im Zwischenkreis wird der Fehler "UNTERSPANNUNG, F05" angezeigt. Die Reaktion des Antriebs hängt von der Einstellung ACTFAULT/STOPMODE ab.

Verhalten mit angesteuerter Haltebremse

Servoverstärker mit freigegebener Haltebremsfunktion verfügen über einen gesonderten Ablauf zum Abschalten der Endstufe (⇒ S. 26). Die Wegnahme des Enable Signals löst eine Bremsung aus.


Generell gilt für die interne Baugruppe "Haltebremse", wie für alle elektronischen Schaltungen, dass die Möglichkeit der Fehlfunktion berücksichtigt werden muss. Das personell sichere Stillsetzen eines Motors mit Haltebremse erfordert zusätzlich einen elektromechanischen Schließer für die Halteeinrichtung und eine Löschvorrichtung für die Bremse.

Verhalten der Wiederanlaufsperre -AS-

Mit der Wiederanlaufsperre -AS- kann bei SERVOSTAR 640/670 nach dem Stillsetzen des Antriebs über eine interne Elektronik der Antrieb bei angelegter Leistungsversorgung so abgeschaltet werden, dass die Antriebswelle gegen ungewollten Anlauf geschützt ist. Die Verwendung der Wiederanlaufsperre -AS- ist im Kapitel "Wiederanlaufsperre -AS-" ab S. 70 beschrieben.

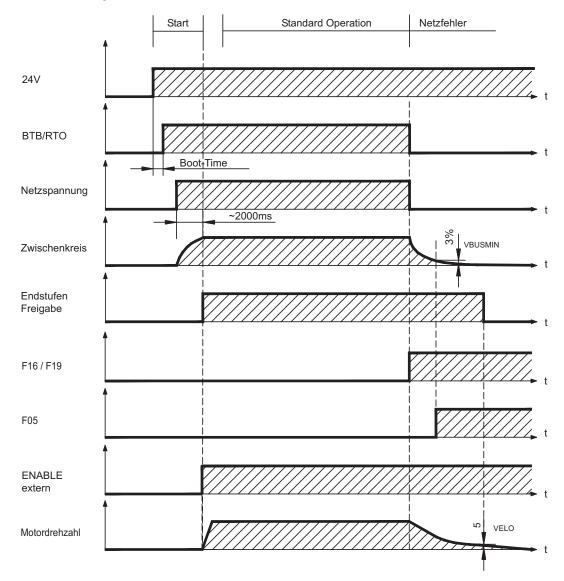
6.7.1 Verhalten im Normalbetrieb

Das Verhalten der Servoverstärker hängt immer ab von der aktuellen Einstellung diverser Parameter (z.B. ACTFAULT, VBUSMIN, VELO, STOPMODE usw., siehe <u>Online Hilfe</u>). Im unten dargestellten Diagramm ist die funktional richtige Reihenfolge beim Einschalten und Ausschalten des Servoverstärkers dargestellt.

Geräte mit angewählter Funktion (Halte-)"Bremse" verfügen über einen gesonderten Ablauf zum Abschalten der Endstufe (⇔ S.26).

6.7.2 Verhalten im Fehlerfall (bei Standardeinstellung)

Das Verhalten der Servoverstärker hängt immer ab von der aktuellen Einstellung diverser Parameter (z.B. ACTFAULT, VBUSMIN, VELO, STOPMODE usw., siehe Online Hilfe).



NORSICHT Antrieb trudelt aus!

Einige Fehler (siehe <u>ERRCODE</u>) erzwingen die sofortige Deaktivierung der Endstufe, unabhängig von der <u>ACTFAULT</u> Einstellung.

Verletzungsgefahr durch ungesteuertes Austrudeln des Antriebs. Für funktionale Sicherheit muss eine zusätzliche, sicher angesteuerte mechanische Bremse verwendet werden.

Das Diagramm zeigt den Startablauf und den Ablauf der internen Steuerung des Servoverstärkers bei Ausfall einer oder mehrerer Phasen der Leistungsversorgung mit Standardeinstellungen der Parameter.

(F16 / F19 = Fehlermeldungen Netz-BTB / Netzphase, F05 = Fehlermeldung Unterspannung)

Auch wenn eine externe Steuerung nicht eingreift (Enable Signal bleibt im Beispiel aktiv), wird der Motor bei Erkennung des Netzphasenfehlers und unveränderter werksseitiger Einstellung (ACTFAULT=1) sofort mit der Notbremsrampe abgebremst.

6.8 Stopp-/Not-Halt Funktionen nach EN 60204

INFO

Mit der Wiederanlaufsperre -AS- (siehe ab Seite 70) kann bei SERVOSTAR 640/670 nach dem Stillsetzen des Antriebs über eine interne Elektronik der Antrieb bei angelegter Leistungsversorgung so abgeschaltet werden, dass die Antriebswelle gegen ungewollten Anlauf geschützt ist.

INFO

Zur Verwirklichung der Stopp-Kategorien müssen die Parameter "STOPMODE" und "ACTFAULT" auf 1 eingestellt sein. Ändern Sie die Parameter gegebenenfalls über das Terminalfenster der Inbetriebnahmesoftware und speichern Sie die Daten im EEPROM.

Beispiele zur Realisierung finden Sie im KDN auf der Seite "Stopp und Not Halt Funktion".

6.8.1 Stopp

Die Stopp-Funktion dient dem Stillsetzen der Maschine im Normalbetrieb. Die Stopp-Funktionen werden durch die EN 60204 definiert.

Kategorie 0: Stillsetzen durch sofortiges Ausschalten der Energiezufuhr zu den

Maschinenantrieben (d.h. ein ungesteuertes Stillsetzen).

Kategorie 1: Ein gesteuertes Stillsetzen, wobei die Energiezufuhr zu den

Maschinenantrieben beibehalten wird, um das Stillsetzen zu erzielen und die Energiezufuhr erst dann unterbrochen wird, wenn der

Stillstand erreicht ist.

Kategorie 2: Ein gesteuertes Stillsetzen, bei dem die Energiezufuhr zu den

Maschinenantrieben erhalten bleibt.

Die Stopp-Kategorie muss anhand der Risikobewertung der Maschine festgelegt werden. Zusätzlich sind geeignete Maßnahmen vorzusehen, um ein zuverlässiges Stillsetzen sicherzustellen.

Kategorie-0- und Kategorie-1-Stopps müssen unabhängig von der Betriebsart funktionsfähig sein und ein Kategorie-0-Stopp muss Vorrang haben. Stopp-Funktionen müssen durch **Trennen** des entsprechenden Kreises realisiert werden und haben Vorrang vor zugeordneten Start-Funktionen.

Falls erforderlich, müssen Möglichkeiten vorgesehen werden, um Schutzeinrichtungen und Verriegelungen anzuschließen. Bei Bedarf muss die Stopp-Funktion der Steuerungslogik ihren Zustand anzeigen. Das Rücksetzen der Stopp-Funktion darf keinen gefährlichen Zustand auslösen.

Beispiele zur Realisierung finden Sie im KDN auf der Seite "Stopp und Not Halt Funktion".

6.8.2 Not-Halt

Die Not-Halt-Funktion wird zum schnellstmöglichen Anhalten der Maschine in einer Gefahrensituation verwendet. Die Not-Halt-Funktion ist durch die Norm EN 60204 definiert. Prinzipien der Not-Halt Ausrüstung und funktionale Gesichtspunkte sind in ISO 13850 festgelegt.

Der Steuerbefehl für den Not-Halt wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund).

Die Not-Halt-Funktion muss stets voll funktionsfähig und verfügbar sein. Der Bediener muss sofort verstehen, wie dieser Mechanismus bedient wird (ohne eine Anleitung zu konsultieren).

INFO

Die Stopp-Kategorie für den Not-Halt muss durch eine Risikobewertung der Maschine bestimmt werden.

Zusätzlich zu den Anforderungen für Stopp gelten für Not-Halt folgende Anforderungen:

- Der Not-Halt muss Priorität gegenüber allen anderen Funktionen und Betätigungen in allen Betriebsarten besitzen.
- Die Energiezufuhr zu jeglichen Antriebselementen, die zu Gefahrensituationen führen könnten, muss entweder so schnell wie möglich unterbrochen werden, ohne dass es zu anderen Gefahren kommt (Stopp Kategorie 0, z.B. mit STO) oder so gesteuert werden, dass die gefahrbringende Bewegung so schnell wie möglich angehalten wird (Stopp-Kategorie 1).
- Das Zurücksetzen darf kein Wiederanlaufen bewirken.

Beispiele zur Realisierung finden Sie im KDN auf der Seite "Stopp und Not Halt Funktion".

6.8.3 NOT-AUS

Die Not-Aus Funktion wird zum Abschalten der elektrischen Energieversorgung der Maschine verwendet, um Gefährdungen durch elektrische Energie (z.B. eines elektrischen Schlages) auszuschließen. Funktionale Gesichtspunkte für Not-Aus sind in IEC 60364-5-53 festgelegt.

Der Not-Aus wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund).

INFO

Die Ergebnisse einer Risikobewertung der Maschine bestimmen, ob ein Not-Aus notwendig ist.

Not-Aus wird erreicht durch Abschalten der Energieeinspeisung mit elektromechanischen Schaltgeräten. Das führt zu einem Stopp der Kategorie 0. Wenn diese Stopp Kategorie für die Maschine nicht zulässig ist, muss der Not-Aus durch andere Maßnahmen (z.B. Schutz gegen direktes Berühren) ersetzt werden.

6.9 Berührungsschutz

6.9.1 Ableitstrom

Der Ableitstrom über den Schutzleiter PE entsteht aus der Summe der Geräte-und Kabelableitströme. Der Frequenzverlauf des Ableitstromes setzt sich aus einer Vielzahl von Frequenzen zusammen, wobei die Fehlerstromschutzschalter maßgeblich den 50Hz Strom bewerten. Messungen des Ableitstromes mit einem handelsüblichen Multimeter sind aus diesem Grunde nicht möglich.

Mit unseren kapazitätsarmen Leitungen kann als Faustformel bei 400V Netzspannung abhängig von der Taktfrequenz der Endstufe der Ableitstrom angenommen werden zu:

 I_{abl} = n x 20mA + L x 1mA/m bei 8kHz Taktfrequenz der Endstufe I_{abl} = n x 20mA + L x 2mA/m bei 16kHz Taktfrequenz der Endstufe

(mit labl=Ableitstrom, n=Anzahl der Verstärker, L=Länge der Motorleitung)

Bei anderen Netzspannungen verändert sich der Ableitstrom proportional zur Spannung.

Beispiel: 2 x Servoverstärker + 25m Motorleitung bei 8kHz Taktfrequenz:

 $2 \times 20 \text{mA} + 25 \text{m} \times 1 \text{mA/m} = 65 \text{mA} \text{ Ableitstrom}.$

INFO

Da der Ableitstrom gegen PE mehr als 3,5 mA beträgt, muss gem EN 61800-5-1 der PE-Anschluss entweder doppelt ausgeführt werden oder eine Anschlussleitung mit >10mm² Querschnitt verwendet werden.

Durch folgende Maßnahmen können Ableitströme minimiert werden.

- Verringerung der Motorleitungslänge
- Leitungen mit niedriger Kapazität verwenden (siehe S.40)

6.9.2 Fehlerstromschutzschalter (FI)

Nach DIN IEC 60364-4-41 - Errichtungsbestimmung und EN 60204 - Elektrische Ausrüstung von Maschinen ist der Einsatz von Fehlerstromschutzschaltern (im folgenden als Fl bezeichnet) möglich, wenn die notwendigen Bestimmungen eingehalten werden.

Beim SERVOSTAR 640/670 handelt es sich um ein 3 Phasen System mit B6 Brücke. Daher müssen **allstromsensitive FI** verwendet werden, um einen möglichen Gleichfehlerstrom ebenfalls detektieren zu können. Faustformel für die Bestimmung des Ableitstromes siehe Kap. 6.9.1.

Bemessungsfehlerströme beim FI

10 - 30 mA	Schutz bei "indirektem Berühren" für ortsfeste und ortveränderliche elektri-
10 - 30 IIIA	sche Betriebsmittel und zusätzlich bei "direktem Berühren".
50 - 300 mA	Schutz bei "indirektem Berühren" für ortsfeste elektrische Betriebsmittel.

INFO

Für einen Schutz vor direkter Berührung empfehlen wir (Motorleitungslänge < 5m), jeden Servoverstärker einzeln durch einen allstromsensitiven 30mA Fehlerstrom- schutzschalter abzusichern.

Die Verwendung eines selektiven FI -Schutzschalters verhindert durch die intelligentere Auswertung Fehlauslösen der Schutzeinrichtung.

6.9.3 Schutztrenntransformatoren

Wenn ein Schutz gegen indirektes Berühren trotz höherem Ableitstrom zwingend erforderlich ist oder ein alternativer Berührungsschutz gesucht wird, kann der SERVOSTAR 640/670 auch über einen Schutztrenntransformator betrieben werden.

Zur Kurzschlussüberwachung kann ein Isolationswächter eingesetzt werden.

INFO

Wir empfehlen eine möglichst kurze Verdrahtung zwischen Transformator und Servoverstärker.

7 Mechanische Installation

7.1 Wichtige Hinweise

NORSICHT Hoher Ableitstrom!

Gefahr durch elektrischen Schlag, wenn der Verstärker (oder der Motor) nicht EMV-gerecht geerdet ist.

- Verwenden Sie keine lackierten (nichtleitenden) Montageplatten.
- Verwenden Sie in ungünstigen Fällen ein Kupfergewebeband zwischen Erdungsbolzen und Erdpotential zum Ableiten der Ströme.

ACHTUNG

Schützen Sie die Servoverstärker vor unzulässiger Beanspruchung. Insbesondere dürfen bei Transport und Handhabung keine Bauelemente verbogen und / oder Isolationsabstände verändert werden. Vermeiden Sie die Berührung elektronischer Bauelemente und Kontakte.

ACHTUNG

Der Servoverstärker schaltet sich bei Überhitzung selbst ab. Sorgen Sie für ausreichende, gefilterte Kaltluftzufuhr von unten im Schaltschrank oder verwenden Sie einen Wärmetauscher. Beachten Sie hierzu S. 24.

ACHTUNG

Montieren Sie keine Komponenten, die Magnetfelder erzeugen, direkt neben dem Servoverstärker. Starke Magnetfelder könnten interne Bauteile direkt beeinflussen. Montieren Sie magnetfelderzeugende Geräte mit Abstand zu den Servoverstärkern oder/und schirmen Sie die Magnetfelder ab.

7.2 Leitfaden zur mechanischen Installation

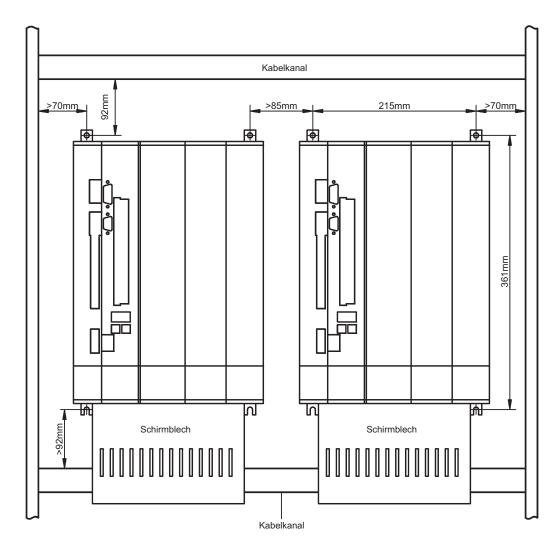
Die folgenden Hinweise sollen Ihnen helfen, bei der mechanischen Installation in einer sinnvollen Reihenfolge vorzugehen ohne etwas Wichtiges zu vergessen.

Einbauort

Im geschlossenen Schaltschrank. Beachten Sie Seite 24. Der Einbauort muss frei von leitfähigen und aggressiven Stoffen sein. Einbausituation im Schaltschrank ⇒ S.35

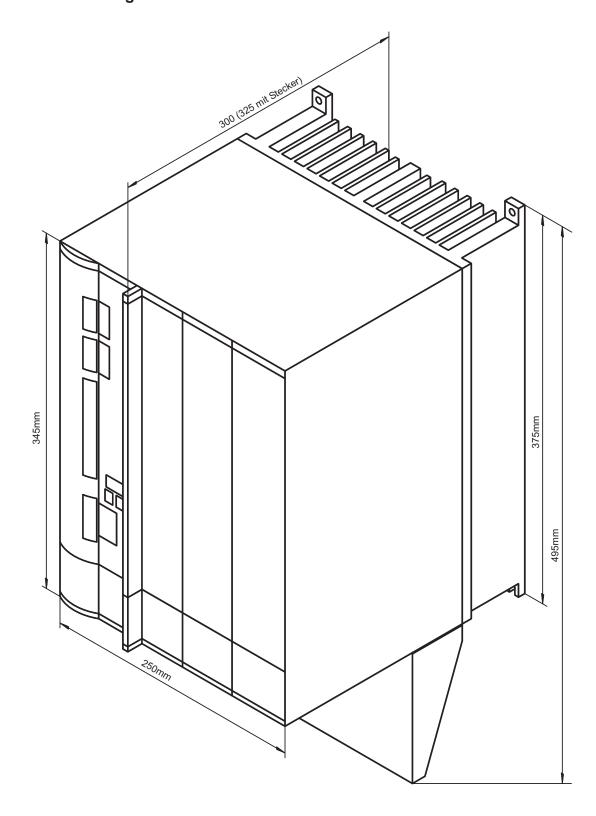
Belüftung

Stellen Sie die ungehinderte Belüftung der Servoverstärker sicher und beachten Sie die zulässige Umgebungstemperatur, \Rightarrow S.24. Beachten Sie die erforderlichen Freiräume ober- und unterhalb der Servoverstärker, \Rightarrow S.35.


Montage

Montieren Sie Servoverstärker und Netzteil, Filter und Drossel nahe beieinander auf der leitenden, **geerdeten** Montageplatte im Schaltschrank.

Erdung Abschirmung EMV-gerechte Abschirmung und Erdung (⇒ S.44) Erden Sie Montageplatte, Motorgehäuse und CNC-GND der Steuerung. Hinweise zur Anschlusstechnik finden Sie auf Seite 40


7.3 Montage

Hinweise zur Durchsteckmontage erhalten Sie von unserem Kundendienst. Montagematerial: 4 Zylinderschrauben mit Innensechskant EN 4762, M6 Erforderliches Werkzeug: Sechskantschlüssel 5 mm

7.4 Abmessungen

8 Elektrische Installation

8.1 Wichtige Hinweise

▲ GEFAHR Hohe Spannung bis 900V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Kontakte können bis zu fünf Minuten nach Abschalten der Stromversorgung gefährliche Spannungen führen. Steuer- und Leistungsanschlüsse können Spannung führen, auch wenn sich der Motor nicht dreht.

- Installieren und verdrahten Sie die Geräte nur im abgeschalteten Zustand.
- Achten Sie darauf, dass die Anlage sicher freigeschaltet ist (Absperrung, Warnzeichen usw.).
- Lösen Sie die elektrischen Anschlüsse der Servoverstärker nie unter Spannung.
- Warten Sie nach dem Freischalten der Anlage mindestens fünf Minuten, bevor Sie spannungsführende Geräteteile (z.B. Kontakte) berühren oder Anschlüsse lösen.
- Messen Sie zur Sicherheit die Spannung im Zwischenkreis (+DC und -DC) und warten Sie, bis die Spannung unter 50V abgesunken ist.

ACHTUNG

Falsche Netzspannung, ungeeigneter Motor oder fehlerhafte Verdrahtung kann den Servoverstärker beschädigen. Prüfen Sie die Zuordnung von Servoverstärker und Motor. Vergleichen Sie Nennspannung und Nennstrom der Geräte. Führen Sie die Verdrahtung nach den Vorgaben auf Seite 39 aus. Stellen Sie sicher, dass die maximal zulässige Nennspannung an den Anschlüssen L1, L2, L3 bzw. +DC, —DC auch im ungünstigsten Fall um nicht mehr als 10% überschritten wird (siehe EN 60204-1).

ACHTUNG

Die Verwendung externer Netzdrosseln und Filter ist erforderlich. Überdimensionierte Absicherung gefährdet Leitungen und Geräte. Absicherung der AC-Einspeisung und 24V-Versorgung erfolgt durch den Anwender, empfohlene Dimensionierung ⇒ S.24. Hinweise zu FI-Schutzschalter ⇒ S.33.

ACHTUNG

Der Status des Servoverstärkers muss von der Steuerung überwacht werden. Schleifen Sie den BTB-Kontakt in den Not-Aus-Kreis der Anlage ein. Der Not-Aus-Kreis muss das Netzschütz schalten.

INFO

Veränderung der Servoverstärker-Einstellung mit Hilfe der Inbetriebnahmesoftware sind gestattet. Weitere Eingriffe führen zum Verlust des Gewährleistungsanspruchs.

8.2 Leitfaden zu elektrischen Installation

ACHTUNG

Korrekte Verdrahtung ist die Basis für die zuverlässige Funktion des Servosystems. Verlegen Sie Leistungs- und Steuerkabel getrennt. Wir empfehlen einen Abstand größer als 20 cm (verbessert die Störfestigkeit). Bei Verwendung eines Motorleistungskabels mit integrierten Bremssteueradern müssen die Bremssteueradern separat abgeschirmt sein. Legen Sie den Schirm beidseitig und großflächig (niederohmig) auf, möglichst über metallisierte Steckergehäuse oder Schirmklemmen. Hinweise zur Anschlusstechnik finden Sie auf Seite 40.

ACHTUNG

Rückführleitungen dürfen nicht verlängert werden, da dadurch die Abschirmung unterbrochen und die Signalauswertung gestört würde. Leitungen zwischen Verstärker und ext. Bremswiderstand müssen abgeschirmt sein. Verlegen Sie sämtliche Leistungskabel in ausreichendem Querschnitt nach EN 60204 (⇒ S.25) und verwenden Sie Kabelmaterial mit der auf Seite 40 geforderten Qualität, um die max. Kabellänge zu erreichen.

Die folgenden Hinweise sollen Ihnen helfen, bei der elektrischen Installation in einer sinnvollen Reihenfolge vorzugehen ohne etwas Wichtiges zu vergessen.

Leitungswahl

Wählen Sie Leitungen gemäß EN 60204 aus, ⇒ S.25

Erdung Abschirmung

EMV-gerechte Abschirmung und Erdung (⇒ S.44) Erden Sie Montageplatte, Motorgehäuse und CNC-GND der Steuerung. Hinweise zur Anschlusstechnik finden Sie auf Seite 40

Verdrahtung

- Leistungs- und Steuerkabel getrennt verlegen
- BTB-Kontakt in den Not-Aus-Kreis der Anlage einschleifen.
- Digitale Ein- und Ausgänge des Servoverstärkers anschließen
- AGND anschließen (auch wenn ein Feldbus verwendet wird)
- Sofern benötigt, analogen Sollwert anschließen
- Rückführeinheit (Feedback) anschließen
- Sofern benötigt, Encoder-Emulation anschließen
- Erweiterungskarte anschließen (siehe Hinweise ab Seite 98)
- Motorleitungen anschließen, Abschirmungen beidseitig auflegen
- Motor-Haltebremse anschließen, Abschirmung beidseitig auflegen
- Externen Bremswiderstand anschließen (mit Absicherung)
- Hilfsspannung anschließen (maximal zulässige Spannungswerte
- ⇒ S.24)
- Netzdrossel und Netzfilter anschließen, zwischen Netzfilter und
- Servoverstärker geschirmte Leitung verwenden
- Leistungsspannung anschließen
- (maximal zulässige Spannungswerte ⇒ S.24)
- PC anschließen (⇒ S.69).

Überprüfung

— End-Überprüfen der ausgeführten Verdrahtung anhand der

- verwendeten Anschlusspläne

8.3 Verdrahtung

Das Vorgehen bei einer Installation wird exemplarisch beschrieben. Je nach Einsatz der Geräte kann ein anderes Vorgehen sinnvoll oder erforderlich sein.

Weiterführendes Wissen vermitteln wir Ihnen in Schulungskursen (auf Anfrage).

▲ GEFAHR Hohe Spannung bis 900V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Installieren und verdrahten Sie die Geräte nur im abgeschalteten Zustand, d. h. es darf weder die Netzspannung noch die 24 V Hilfsspannung oder die Netzspannung anderer angeschlossener Geräte eingeschaltet sein.
- Achten Sie darauf, dass die Anlage sicher freigeschaltet ist (Absperrung, Warnzeichen usw.).

INFO

Das Masse-Zeichen rm, das Sie in allen Anschlussplänen finden, deutet an, dass Sie für eine möglichst großflächige, elektrisch leitende Verbindung zwischen dem gekennzeichneten Gerät und der Montageplatte in Ihrem Schaltschrank sorgen müssen. Diese Verbindung soll die Ableitung von HF-Störungen ermöglichen und ist nicht zu verwechseln mit dem PE-Zeichen $\frac{1}{2}$ (Schutzmaßnahme nach EN 60204).

INFO

Verwenden Sie folgende Anschlusspläne:

Übersicht: Seite 44Netz: Seite 46Motor: Seite 49Feedback: Seite 50ff

Elektronisches Getriebe / Master-Slave:

Master-Slave-Interface : Seite 58
Puls-Richtungs-Interface : Seite 61

Encoder Emulation:

ROD (A quad B) : Seite 63
SSI : Seite 64

Digitale/Analoge Ein- Ausgänge : Seite 65ff
RS232 / PC : Seite 69
CAN-Interface : Seite 70
Wiederanlaufsperre -AS- : Seite 74
Mehrachsensystem, Beispiel : Seite 92

Erweiterungskarten:

 I/O-14/08
 : Seite 101

 PROFIBUS
 : Seite 102

 SERCOS
 : Seite 104

 DeviceNet
 : Seite 105

 EtherCAT
 : Seite 108

 SynqNet
 : Seite 109

 -2CAN : Seite 112

8.3.1 Technische Daten Anschlussleitungen

Weitere Informationen über chemische, mechanische und elektrische Eigenschaften der Leitungen erhalten Sie von unserer Abteilung Applikation.

INFO

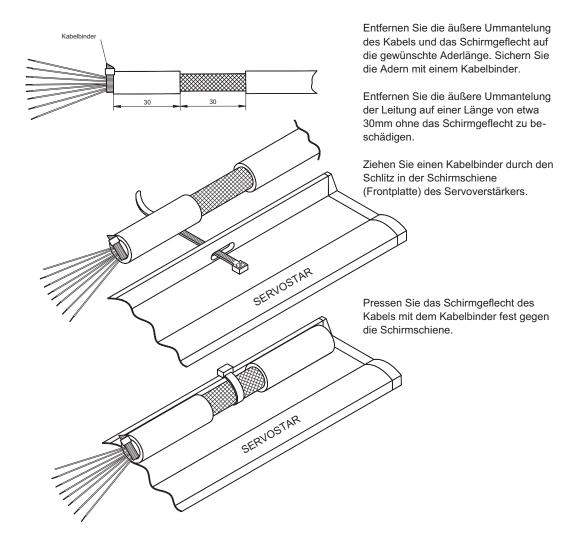
Beachten Sie die Vorschriften im Kapitel "Leiterquerschnitte" auf Seite 25. Um den Verstärker mit der max. erlaubten Kabellänge sicher zu betreiben, müssen Sie Kabelmaterial verwenden, das den u.a. Anforderungen an die Kapazität genügt.

Isolationsmaterial

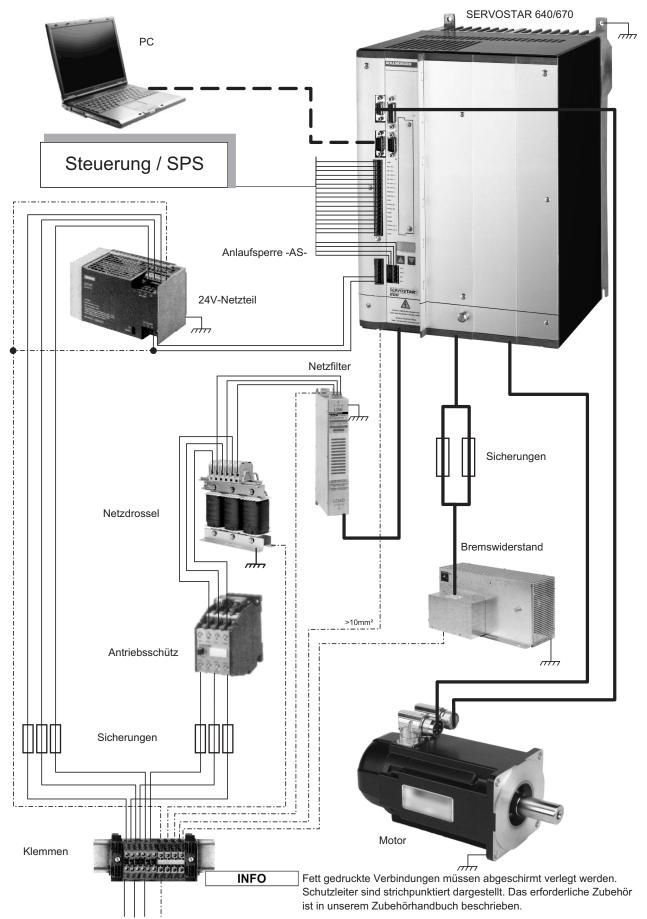
Mantel PUR (Polyurethan, Kurzzeichen 11Y)
Aderisolation PETP (Polyesteraphtalat, Kurzzeichen 12Y)

Kapazität

Motorleitung < 4mm² : kleiner als 150 pF/m

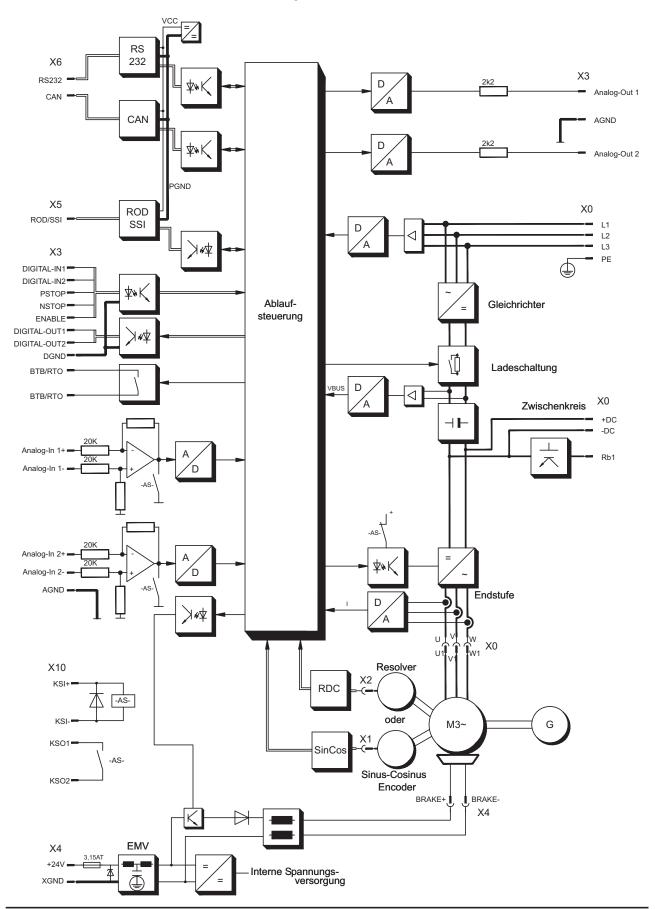

≥ 4mm² : kleiner als 250 pF/m

Feedback-Leitung kleiner als 120 pF/m

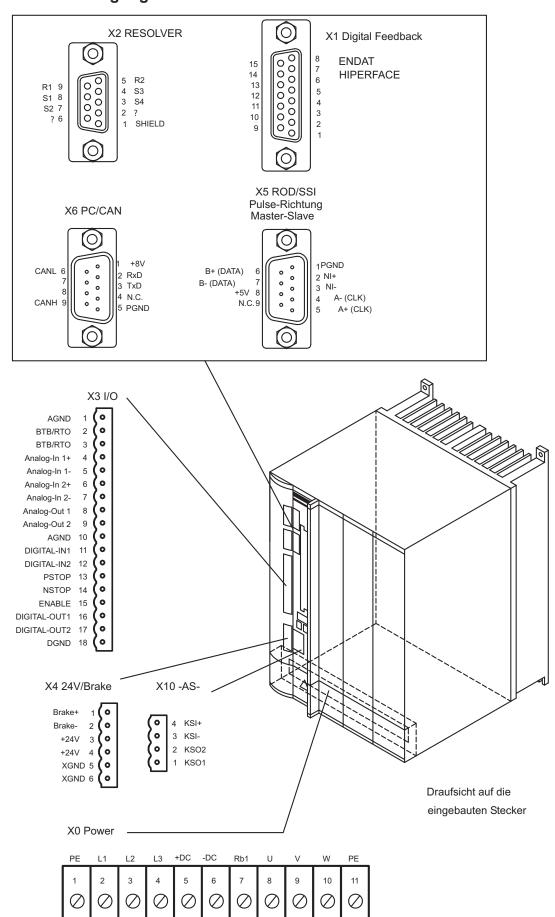

Techn. Daten

Detaillierte Beschreibung der Kabeltypen und Konfektionierung finden Sie im Zubehörhandbuch.

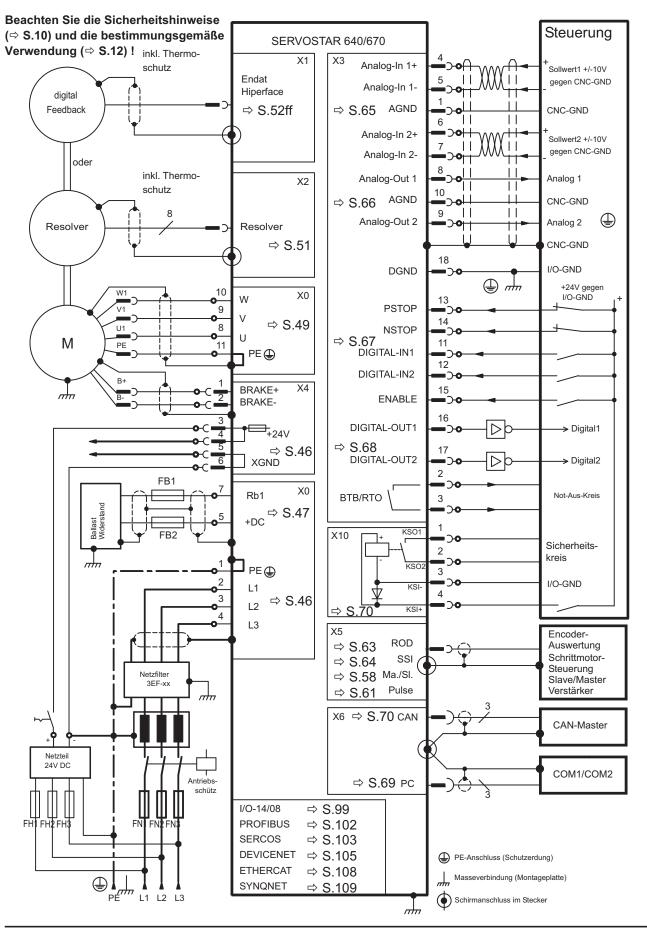
8.3.2 Schirmanschluss an der Frontplatte



8.4 Komponenten eines Servosystems

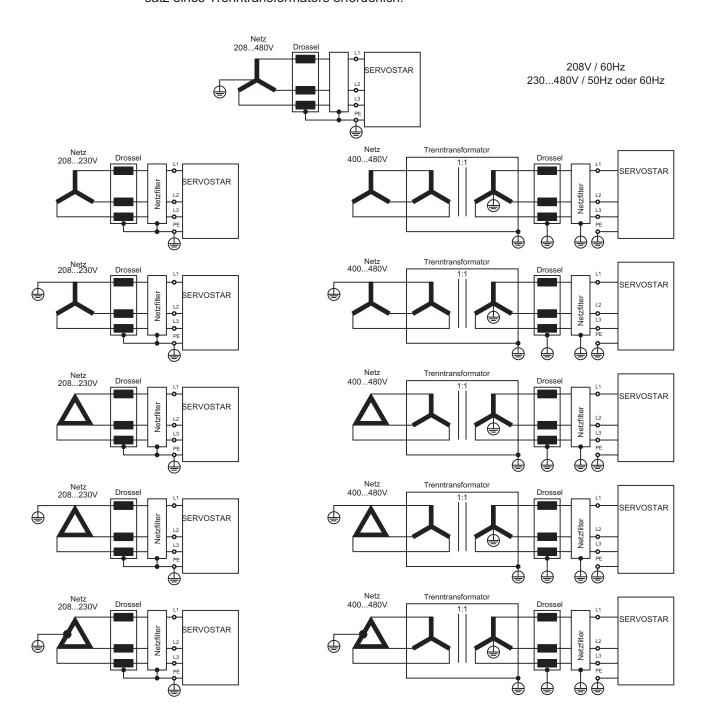


8.5 Blockschaltbild


Das unten stehende Blockdiagramm dient nur zur Übersicht.

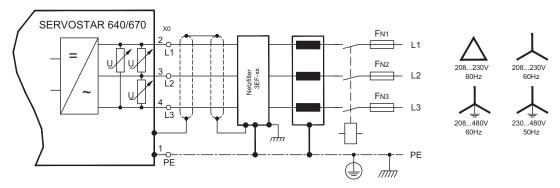
8.6 Steckerbelegung

8.7 Anschlussplan Übersicht

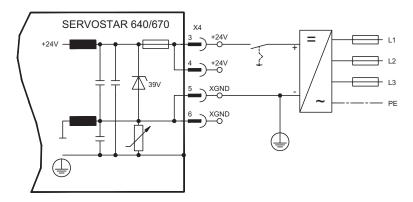

8.8 Spannungsversorgung

8.8.1 Anschluss an unterschiedliche Versorgungsnetze

Auf dieser Seite finden Sie die Anschlussvarianten für alle möglichen Versorgungsnetze.


ACHTUNG

Für asymmetrisch geerdete oder ungeerdete 400...480V-Netze ist in jedem Fall der Einsatz eines Trenntransformators erforderlich.


8.8.2 Netzanschluss (X0)

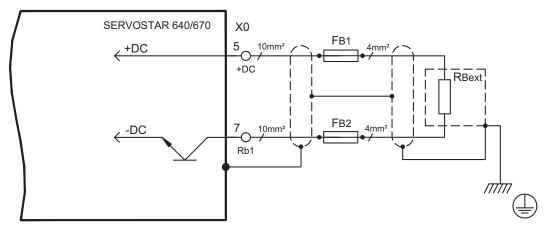
- Direkt am geerdeten 3~ Netz
- Absicherung (z.B. Schmelzsicherung) durch den Anwender ⇒ S.24

8.8.3 24V-Hilfsspannung (X4)

- Potentialgetrennt aus einem externen 24V DC-Netzteil, z.B. mit Trenntransformator
- Erforderliche Stromstärke ⇒ S.23
- Enstörfilter für die 24V-Hilfsspannungsversorgung integriert

8.9 Zwischenkreis (X0)

Parallelschaltfähig durch Aufteilung der Bremsleistung auf alle am gleichen DC-Bus (Zwischenkreis) angeschlossenen Verstärker. (Anschlussbeispiel ⇒ S.92).


ACHTUNG

- Nur Servoverstärker mit Spannungsversorgung aus demselben Netz (identische Leistungs-Versorgungsspannung) dürfen am Zwischenkreis verbunden werden.
- Die Summe der Nennströme aller zu einem SERVOSTAR 640/670 parallelgeschalteten Servoverstärker darf 300A nicht überschreiten.
- Verwenden Sie ungeschirmte Einzeladern (>=10mm²) bis max. 500mm Länge. Bei größeren Längen abgeschirmte Leitungen verwenden.

8.9.1 Externer Bremswiderstand (X0)

Absicherung und Bremswiderstand durch den Anwender.

8.9.2 Kondensatormodule KCM

Die **KCM** Module (**K**OLLMORGEN **C**apacitor **M**odule) nehmen Energie auf, die der Motor im generatorischen Betrieb erzeugt. Normalerweise wird diese Energie über Bremswiderstände in Verlustleistung umgesetzt. Die KCM Module speisen die gespeicherte Energie in den Zwischenkreis zurück, wenn sie benötigt wird.

Maße (HxBxT): 300x100x201 mm

KCM-S	Spart Energie: Die beim generatorischen Bremsen im Kondensatormodul gespeicherte Energie steht für den nächsten Beschleunigungsfall zur Verfügung. Die Einsatzspannung des Moduls wird automatisch während der ersten Lastzyklen ermittelt.
KCM-P	Power trotz Netzausfall: Bei Ausfall der Leistungsversorgung stellt das Modul dem Servoverstärker die gespeicherte Energie für ein gesteuertes Stillsetzen des Antriebs zur Verfügung (nur Leistungsspannung, 24V separat puffern).
KCM-E	Erweiterungsmodul für beide Einsatzzwecke. Erweiterungsmodule sind in zwei Kapazitätsklassen verfügbar.

Die KCM Module können an S601 ... S640 Geräte (Netzspannung 400/480V) angeschlossen werden. Montagehinweise, Installations- und Inbetriebnahmehinweise finden Sie in der technischen Beschreibung der KCM Module und im KDN.

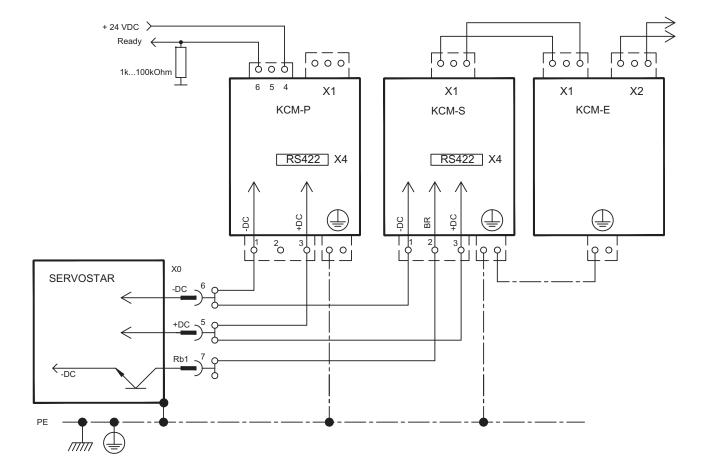
Technische Daten KCM Module

	Speicher Kapazität	Nenn- Anschluss- spannung	Spitzen- Anschluss- spannung	Leis- tung	Schutz- art	Einsatz- spannung	Gewicht
Тур	[Ws]	[V DC]	[V DC]	[kW]		[V DC]	[kg]
KCM-S200	1600		max.			ermittelt	6,9
KCM-P200	2000	max.	950 VDC	18	IP20	470 VDC	6,9
KCM-E200	2000	850 VDC	(30s in	10	IP20	-	4,1
KCM-E400	4000		6min)			-	6,2

Anschlussbeispiel KCM Module

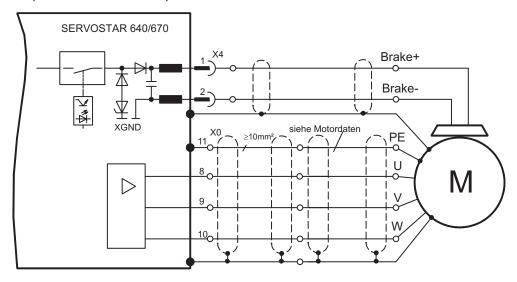
ACHTUNG

Maximale Leitungslänge zwischen Servoverstärker und KCM: 500mm. Verdrillen Sie die Leitungen +DC/-DC. Größere Kabellängen erfordern eine Abschirmung. Achten Sie auf korrekte Polung, bei Vertauschen von DC+/DC- werden die KCM Module zerstört.


⚠ GEFAHR Hohe Gleichspannung bis zu 900V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Die Selbstentladezeit der Module kann über eine Stunde betragen.

- Schalten Sie die Netzspannung ab (freischalten). Sie dürfen nur bei freigeschalteter Anlage an den Anschlüssen arbeiten.
- Prüfen Sie den Ladezustand mit einem für Gleichspannung bis 1000V geeigneten Messgerät.
- Wenn Sie zwischen den Klemmen DC+/DC- oder gegen Erde eine Spannung größer als 50 V messen, entladen Sie die Module manuell wie in der Betriebsanleitung der KCM Module beschrieben.


KCM-S: Schließen Sie den BR Anschluss an den Servoverstärker mit den häufigsten generatorischen Bremsvorgängen im System an. Zur Inbetriebnahme geben Sie den Servoverstärker frei und starten ein Fahrprofil, das zum Ansprechen des Bremschoppers führt. KCM-S ermittelt die Chopperschwelle und beginnt zu laden, die LED blinkt. Die aufgenommene Energie wird beim nächsten Beschleunigungsvorgang genutzt.

KCM-P: wenn die Zwischenkreisspannung 470 VDC übersteigt, wird das KCM-P geladen. Nach Ausfall der Netzspannung steht die gespeicherte Energie dem Zwischenkreis zur Verfügung (nur Leistungsspannung, 24V separat puffern).

8.10 Motoranschluss mit Bremse (X0, X4)

Leiterquerschnitte siehe entsprechendes Motorhandbuch.

8.11 Feedback

In jedem geschlossenen Servosystem ist im Normalfall mindestens ein Rückkopplungsgerät erforderlich, das Istwerte vom Motor an den Servoantrieb sendet. Abhängig vom Typ des Rückkopplungsgerätes (Feedback) wird die Rückmeldung zum Servoverstärker digital oder analog übertragen.

SERVOSTAR 640/670 unterstützt alle gängigen Arten von Feedback-Geräten, deren Funktionen mit den Parametern

FBTYPE (Bildschirmseite FEEDBACK), primäres Feedback
(Bildschirmseite LAGEREGLER), sekundäres Feedback
(Bildschirmseite LAGEREGLER / EL.GETRIEBE), sekundäres

Feedback

in der Inbetriebnahme-Software zugewiesen werden müssen. Skalierung und weitere Einstellungen müssen ebenfalls dort vorgenommen werden.

Konfiguration	Ort	Typen- auswahl	Kommu- tierung	Drehzahl- regler	Lage- regler	elektr. Getriebe
Ein Feedback	im Motor	FBTYPE	Х	Х	Х	
	im Motor	FBTYPE	Х	X		
Zwei Feedbacks		EXTPOS			Х	
	extern	GEARMODE				Х

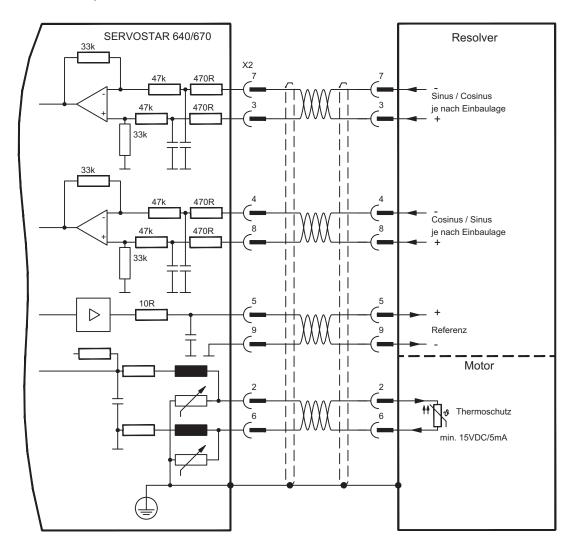
Eine detaillierte Beschreibung der ASCII Parameter finden Sie in der <u>Online Hilfe</u> der Inbetriebnahme-Software.

Die folgende Tabelle zeigt eine Übersicht der unterstützten Feedback-Typen, zugehörige Parameter und einen Verweis auf den jeweiligen Anschlussplan. Die dort angegebene Pinbelegung auf der Geberseite bezieht sich jeweils auf Kollmorgen Motoren.

Primärer Feedback-Typ	Stecker	Anschlussplan	FBTYPE
Resolver	X2	⇒ S.51	0, 3
SinCos Encoder BISS	X1	⇒ S.52	20*
SinCos Encoder ENDAT	X1	⇒ S.53	3, 4
SinCos Encoder HIPERFACE	X1	⇒ S.53	2, 3
SinCos Encoder ohne Datenspur	X1	⇒ S.54	6, 7 (16*)
SinCos Encoder + Hallgeber	X1	⇒ S.55	11*
RS422 5V + Hallgeber	X1	⇒ S.55	12*
ComCoder	X1	⇒ S.56	12*
RS422 5V	X5	⇒ S.57	8*, 9*
Sensorlos (ohne Feedback)	-	-	10*

^{*} einstellbar nur im Terminalfenster der Inbetriebnahme-Software

INFO

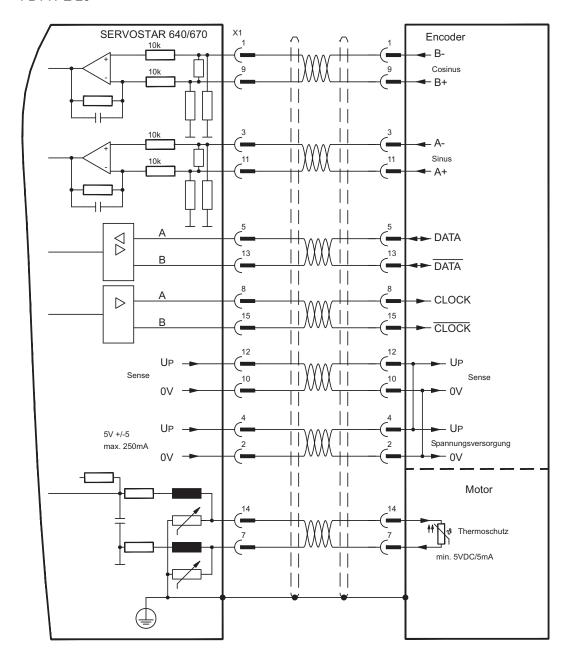

Die Kombinationsmöglichkeiten mit sekundären Feedbacksystemen für die Lageregelung / elektrisches Getriebe finden Sie ab Seite 58.

^{**} RS422 ist ein Kürzel für Inkrementalgeber

8.11.1 Resolver (X2)

Anschluss eines Resolvers (2 bis 32-polig) als Rückführsystem. Der Thermoschutz im Motor wird über die Resolverleitung am SERVOSTAR 640/670 angeschlossen und dort ausgewertet.

Bei geplanter Leitungslänge über 100m sprechen Sie mit unserer Applikationsabteilung. FBTYPE $\,0,\,3$

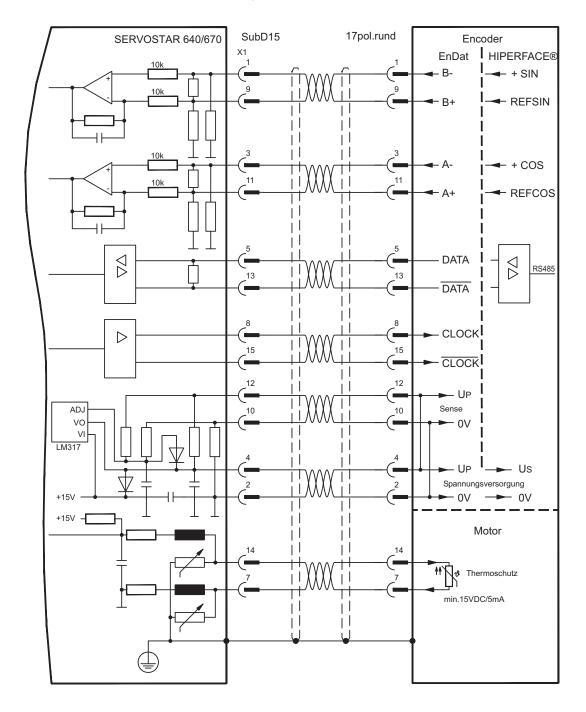

8.11.2 Sinus Encoder mit BiSS (X1)

Anschluss von single- oder multiturn sinus-cosinus Encodern mit BiSS Interface als Rückführsystem (ab Firmware-Version 6.68). Beim Einschalten des Servoverstärkers werden im Encoder EEPROM gespeicherte Parameter ausgelesen, danach werden nur noch die sinus- und cosinus-Signale verwendet.

Der Thermoschutz im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden.

Bei geplanter Leitungslänge über 50m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz (sin, cos): 250 kHz FBTYPE 20


8.11.3 Sinus Encoder mit EnDat 2.1 oder HIPERFACE (X1)

Anschluss von single- oder multiturn sinus-cosinus-Encodern als Rückführsystem. Vorzugstypen sind die EnDat-Geber ECN1313 und EQN1325.

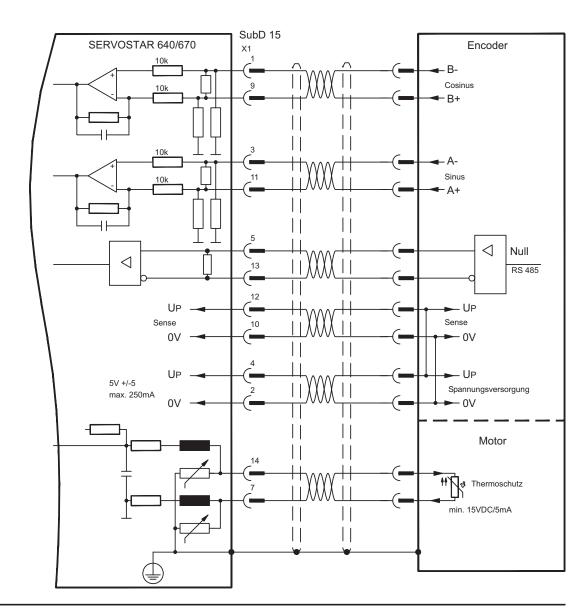
Der Thermoschutz im Motor wird über die Encoderleitung am SERVOSTAR 640/670 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden.

Bei geplanter Leitungslänge über 50m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz (sin, cos): 250 kHz Encoder mit EnDat: FBTYPE 3, 4 Encoder mit HIPERFACE: FBTYPE 2, 3

8.11.4 Sinus Encoder ohne Datenspur (X1)

Anschluss eines Sinus-Cosinus Encoders ohne Datenspur. Der Verstärker benötigt bei jedem Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (Parameterwert MPHASE). Je nach Feedbacktyp wird ein Wake&Shake durchgeführt oder der Wert für MPHASE wird aus dem EEPROM des Servoverstärkers entnommen.

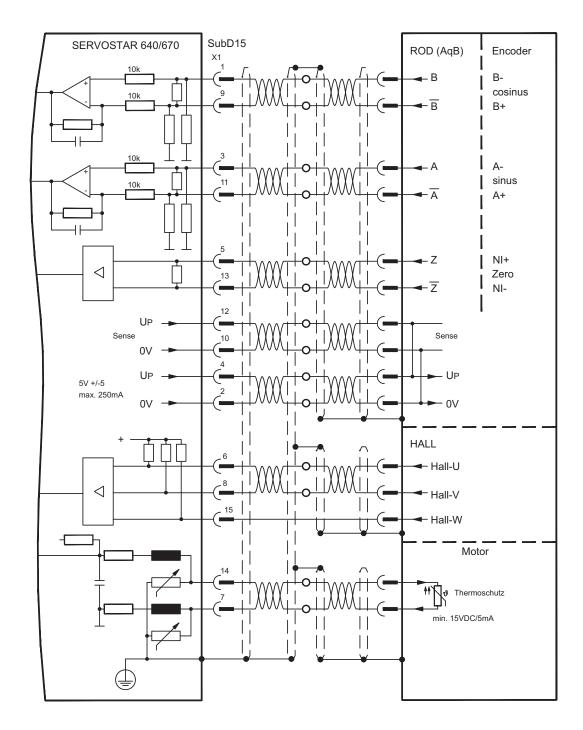

MARNUNG Vertikale Last kann fallen!

Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

Verwenden Sie Wake&Shake nicht bei vertikalen, hängenden Lasten.

Der Thermoschutz im Motor wird über die Encoderleitung an X1 angeschlossen. Bei geplanter Leitungslänge über 50m sprechen Sie mit unserer Applikationsabteilung. Grenzfrequenz (sin, cos): 250 kHz

Gebertyp	FBTYPE	Bemerkung
SinCos 5V	6	MPHASE aus EEPROM
SinCos 5V	7	MPHASE mit wake & shake
Resolver+SinCos5V	16	Kommutierung über Resolver, Drehzahl&Lage über Encoder

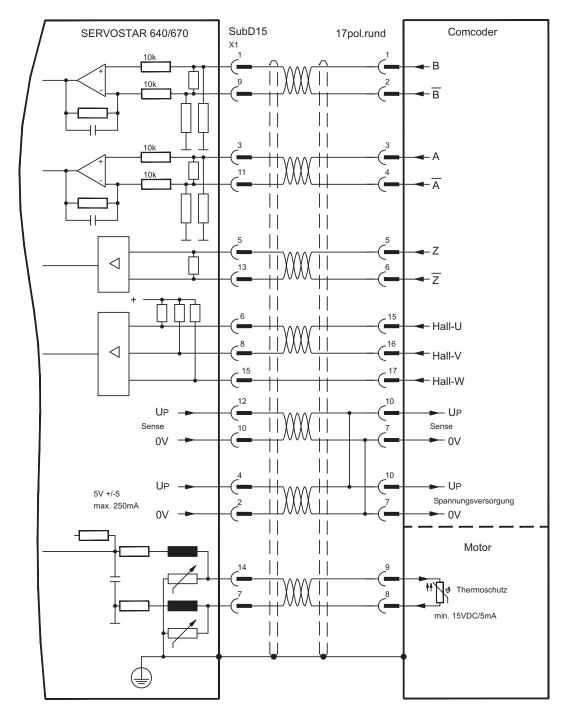


8.11.5 Inkrementalgeber / Sinus Encoder mit Hall (X1)

Gebertypen (inkrementell oder sinus/cosinus), die keine absolute Information zur Kommutierung bereitstellen, können mit einem zusätzlichen Hall-Geber als vollständiges Rückführungssystem ausgewertet werden. Alle Signale werden an X1 angeschlossen.

Bei geplanter Leitungslänge über 25m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz (A, B): 250kHz RS422 mit Hall: FBTYPE 12 Encoder mit Hall: FBTYPE 11


8.11.6 ComCoder (X1)

Anschluss ComCoders als Rückführeinheit. Für die Kommutierung werden Hallsensoren und für die Auflösung ein eingebauter Inkrementalgeber verwendet.

Der Thermoschutz im Motor wird über die Comcoderleitung an X1 angeschlossen und dort ausgewertet.

Bei geplanter Leitungslänge über 25m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz (A, B): 250kHz RS422 mit Hall: FBTYPE 12

8.11.7 Inkrementalgeber (X5)

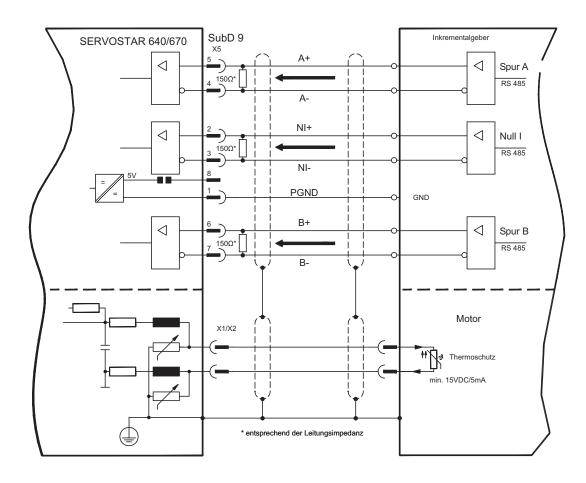
Als Standard Rückführsystem kann ein Inkrementalgeber verwendet werden. Der Verstärker benötigt beim Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (Wert MPHASE). Je nach Feedbacktyp wird ein Wake&Shake durchgeführt oder der Wert für MPHASE wird aus dem EEPROM des Servoverstärkers entnommen.

MARNUNG Vertikale Last kann fallen!

Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

Verwenden Sie Wake&Shake nicht bei vertikalen, hängenden Lasten.

Der Thermoschutz des Motors wird über X1 (siehe S.53) oder X2 (siehe S.51) am Verstärker angeschlossen.


Für Fragen zur Spannungsversorgung des Encoders und bei geplanter Leitungslänge über 50m sprechen Sie mit unserer Applikationsabteilung.

INFO

AGND und DGND an Stecker X3 müssen gebrückt werden!

Grenzfrequenz: 1.5 MHz

Gebertyp	FBTYPE	Bemerkung
RS422 5V	9	MPHASE aus EEPROM
RS422 5V	8	MPHASE mit wake & shake

8.12 Elektronisches Getriebe, Master-Slave Betrieb

Mit der Funktionalität "Elektronisches Getriebe" (siehe Inbetriebnahme-Software und Parameterbeschreibung GEARMODE) wird der Servoverstärker von einem sekundären Feedback als "Folger" gesteuert. Weitere Informationen finden Sie in der Online Hilfe der Inbetriebnahme-Software.

Sie können Master-Slave Systeme aufbauen, einen externen Encoder als Sollwertgeber benutzen oder den Verstärker an eine Schrittmotor-Steuerung anschließen. Der Verstärker wird mit Hilfe der Inbetriebnahmesoftware parametriert (elektronisches Getriebe). Die Auflösung (Impulszahlen/ Umdrehung) ist einstellbar.

Primäres Feedback:

Einstellen auf Bildschirmseite "Feedback" (FBTYPE)

Sekundäres Feedback:

Einstellen auf Bildschirmseite "Lageregler" und "El. Getriebe" (EXTPOS, GEARMODE)

Master-/Slaveeinstellung

Master: Encoderemulation auf Seite "ROD/SSI/Encoder" einstellen (ENCMODE) Slave: einstellen auf Seite "Lageregler" und "El. Getriebe" (EXTPOS, GEARMODE)

Als externe Geber können folgende Typen verwendet werden:

Sekundärer Feedback-Typ	Stecker	Anschlussplan	GEARMODE
ROD** Encoder 5V	X5	⇒ S.59	3, 5*, 13*, 15*
ROD Encoder 24V	X3	⇒ S.59	0, 2*, 10*, 12*
Sinus/Cosinus Encoder	X1	⇒ S.60	6, 8*, 9*, 16*
SSI Encoder	X5	⇒ S.61	7*, 17*
Puls/Richtung 5V	X5	⇒ S.62	4, 14*
Puls/Richtung 24V	X3	⇒ S.62	1, 11*

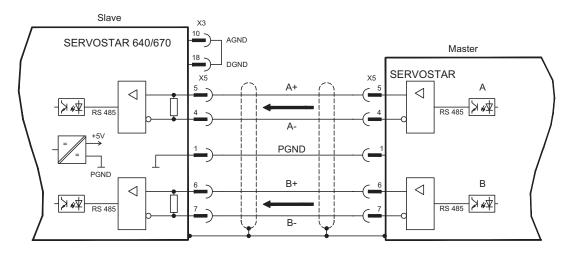
^{*} einstellbar nur im Terminalfenster der Inbetriebnahme-Software

Die folgende Tabelle zeigt erlaubte Kombinationen von primären/sekundären Feedbacks:

	Sekundäres Feedback für Lageregelung/Führung			
Primäres Feedback	Sinus Encoder (X1)	ROD Encoder 5V/24V (X5/X3)	Puls/Richtung 5V/24V (X5/X3)	SSI Encoder (X5)
Resolver (X2) FBTYPE = 0	GEARMODE = 6,8,9,16 FPGA = 0	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 0 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 1,4,11,14 FPGA = 0 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 7,17 FPGA = 1 ENCMODE = 2
Sinus Encoder (X1) FBTYPE = 2,4,6,7,20	-	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 1 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 1,4,11,14 FPGA = 1 ENCMODE = 0	EXTPOS = 1,2,3 GEARMODE = 7,17 FPGA = 1 ENCMODE = 2
Encoder & Hall (X1) FBTYPE = 11,12	-	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 1	EXTPOS = 1,2,3 GEARMODE = 1,4,11,14 FPGA = 1	-
ROD Encoder (X5) FBTYPE = 8,9	-	ENCMODE = 0	ENCMODE = 0	-
Sensorless FBTYPE = 10	-	EXTPOS = 1,2,3 GEARMODE = 0,2,3,5,10,12,13,15 FPGA = 0 ENCMODE = 0		EXTPOS = 1,2,3 GEARMODE = 7,17 FPGA = 1 ENCMODE = 2

^{**} ROD ist ein Kürzel für Inkrementalgeber

8.12.1 Anschluss an SERVOSTAR-Master, 5V Pegel (X5)

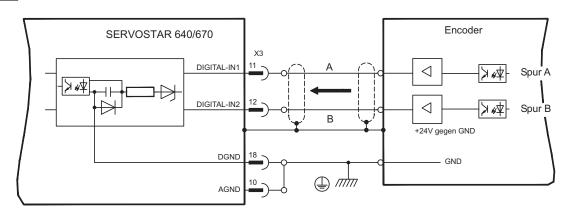

Sie können mehrere SERVOSTAR 640/670 Verstärker zusammenschalten (Master-Slave Betrieb). Bis zu 16 Slave-Verstärker werden dabei vom Master über den Encoder-Ausgang angesteuert.

Verwendet wird hierfür der SubD-Stecker X5.

Grenzfrequenz: 1,5 MHz, Flankensteilheit tv ≤ 0,1µs

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!


8.12.2 Anschluss an ROD Encoder mit 24V Signalpegel (X3)

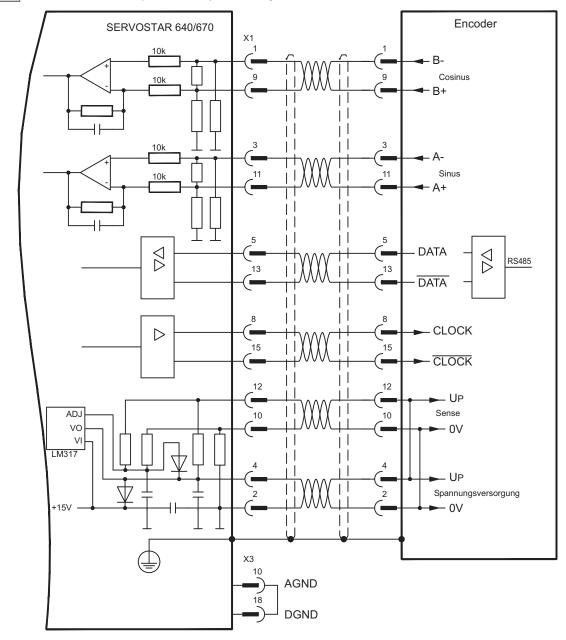
Mit Hilfe dieser Schnittstelle können Sie den SERVOSTAR 640/670 als Slave von einem Encoder mit 24V Signalpegel führen lassen (Master-Slave Betrieb). Verwendet werden hierfür die digitalen Eingänge DIGITAL-IN 1 und 2 an Stecker X3.

Grenzfrequenz: 250 kHz, Flankensteilheit tv ≤ 0,1µs

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!

8.12.3 Anschluss an Sinus/Cosinus Encoder (X1)


Sie können den SERVOSTAR 640/670 als Slave von einem Sinus/Cosinus-Encoder führen lassen (Master-Slave Betrieb). Verwendet wird hierfür der SubD-Stecker X1.

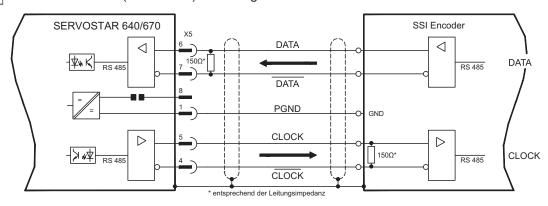
Bei geplanter Leitungslänge über 50m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 250 kHz

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!

8.12.4 Anschluss an SSI Encoder (X5)

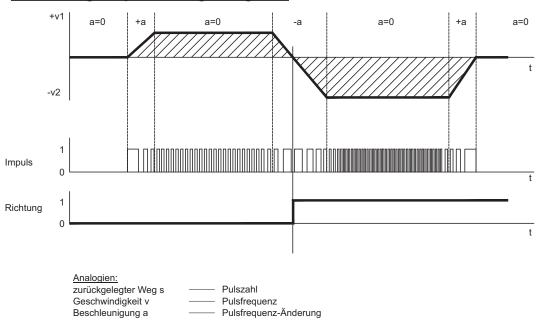

Sie können den SERVOSTAR 640/670 als Slave von einem synchron serielle Absolutgeber (SSI-Encoder)führen lassen (Master-Slave Betrieb). Verwendet wird hierfür der SubD-Stecker X5.

Für Fragen zur Spannungsversorgung des Encoders und bei geplanter Leitungslänge über 50m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 1,5MHz

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!

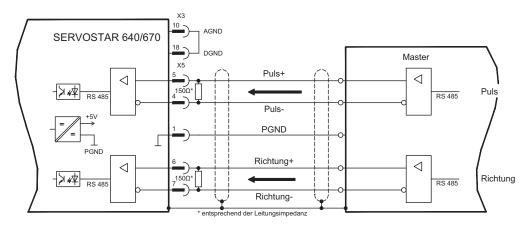

8.12.5 Anschluss an Schrittmotor-Steuerungen (Puls-Richtung)

Sie können den Servoverstärker an eine herstellerneutrale Schrittmotorsteuerung anschließen. Der Servoverstärker wird mit Hilfe der Inbetriebnahmesoftware parametriert (elektrisches Getriebe). Die Schrittzahl ist einstellbar, damit kann der Servoverstärker an die Puls-Richtungs-Signale jeder Schrittmotorsteuerung angepasst werden. Diverse Meldungen können ausgegeben werden.

INFO

Beachten Sie die Grenzfrequenz! Der Anschluss eines ROD-Gebers bietet eine höhere EMV-Störfestigkeit.

Geschwindigkeitsprofil mit Signaldiagramm

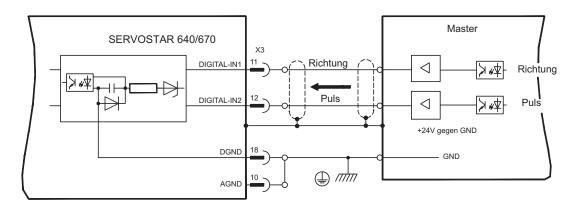

8.12.5.1 Puls/Richtungs-Geber mit 5 V Signalpegel (X5)

Anschluss des Servoverstärkers an eine Schrittmotorsteuerung mit 5 V Signalpegel. Verwendet wird hierfür der SubD-Stecker X5.

Grenzfrequenz: 1,5 MHz

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!



8.12.5.2 Puls/Richtungs-Geber mit 24V-Signalpegel (X3)

Anschluss des Servoverstärkers an eine Schrittmotorsteuerung mit 24 V Signalpegel. Verwendet werden hierfür die digitalen Eingänge DIGITAL-IN 1 und 2 an Stecker X3. Grenzfrequenz: 250 kHz

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!

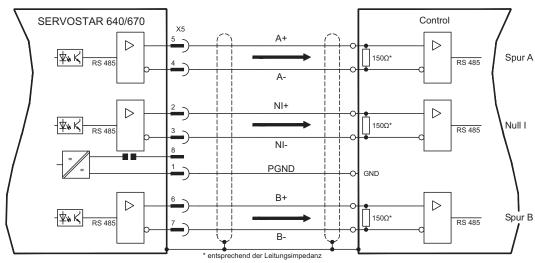
8.13 Encoder-Emulationen

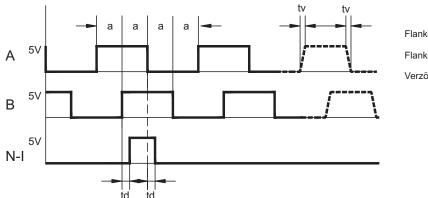
8.13.1 Inkrementalgeber-Ausgabe (X5)

Die Inkrementalgeber-Schnittstelle gehört zum Lieferumfang. Wählen Sie die Encoder-Funktion ROD (Bildschirmseite "Encoder"). Aus den zyklisch-absoluten Signalen des Resolvers bzw. Encoders wird im Servoverstärker die Position der Motorwelle berechnet. Aus dieser Information werden Inkrementalgeber-kompatible Impulse erzeugt. Am SubD-Stecker X5 werden Impulse in zwei um 90° elektrisch versetzten Signalen A und B und ein Nullimpuls ausgegeben.

Die Auflösung (vor Vervielfachung) ist mit dem Parameter AUFLÖSUNG einstellbar:

Encoderfunktion (ENCMODE)	Feedback	Auflösung	Nullimpuls
	Resolver	I ZAN ZILIAN	einer pro Umdrehung (nur bei A=B=1)
ROD (1)	Encoder		einer pro Umdrehung (nur bei A=B=1)
ROD interpolation (3)	Encoder	2 ² 2 ⁷ TTL Striche * Geberauflösung	Weitergabe des Gebersignals von X1 zu X5


Sie können die Lage des Nullimpulses innerhalb einer mechanischen Umdrehung einstellen und speichern (Parameter NI-OFFSET). Die Versorgung der Treiber erfolgt durch eine interne Spannung.


INFO

PGND muss in jedem Fall mit der Steuerung verbunden werden. Die maximal zulässige Leitungslänge beträgt 10 m.

Anschluss- und Signalbeschreibung Inkrementalgeber-Interface :

Default Zählrichtung: aufwärts zählend mit Blick auf die Motorachse bei Rechtsdrehung.

Flankensteilheit tv $\leq 0.1 \mu s$

Verzögerung N-I-td $\leq 0,1\mu s$

 $I\Delta UI \geq 2V/20mA$

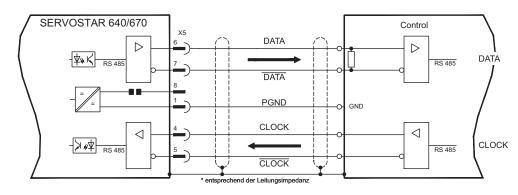
8.13.2 SSI-Ausgabe (X5)

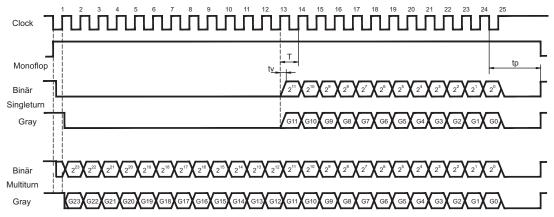
Das SSI-Interface (synchron serielle Absolutgeberemulation) gehört zum Lieferumfang. Wählen Sie die Encoder-Funktion SSI (Bildschirmseite "Encoder"). Aus den zyklisch-absoluten Signalen des Resolvers bzw. Encoders wird im Servoverstärker die Position der Motorwelle berechnet. Aus dieser Information wird eine zum Datenformat handelsüblicher SSI-Absolutgeber kompatible Positionsausgabe erzeugt. Es werden 24 Bit übertragen.

SINGLE TURN: Die oberen 12 Bit sind fest auf NULL gesetzt, die unteren 12 Bit beinhalten die Positionsangabe. Bei 2-poligen Resolvern bezieht sich der Positionswert auf eine volle Umdrehung des Motors, bei 4-poligen Resolvern auf eine halbe Umdrehung und bei 6-poligen Resolvern auf ein Drittel einer Umdrehung.

<u>Ausnahme</u>: Wenn ein Geber mit Kommutierungsspur als Rückführeinheit verwendet wird, werden die oberen 12 Bit solange auf 1 gesetzt (Daten ungültig!), bis eine Referenzfahrt durchgeführt wurde.

MULTI TURN: Die oberen 12 Bit beinhalten die Anzahl der Umdrehungen, die unteren 12 Bit die Positionsangabe.


Die Signalfolge kann im **Gray**format (Standard) oder im **Binär**format ausgegeben werden (Parameter SSI-CODE). Sie können den Servoverstärker an die Taktfrequenz Ihrer SSI-Auswertung mit dem Parameter SSI-TAKT anpassen (Zykluszeit 200 kHz bzw. 1,5 MHz und invertiert).


INFO

Die Versorgung der Treiber erfolgt durch eine interne Spannung. PGND muss in jedem Fall mit der Steuerung verbunden werden.

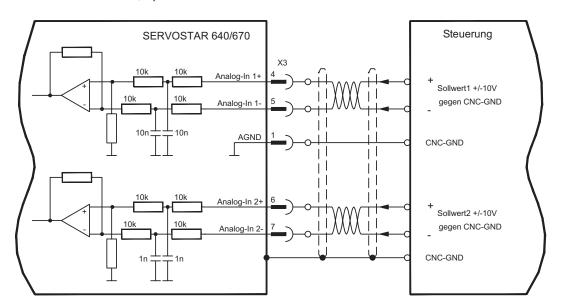
Anschluss- und Signalbeschreibung SSI-Schnittstelle:

Default Zählrichtung: aufwärts zählend mit Blick auf die Motorachse bei Rechtsdrehung.

Übertragungsrate	Monoflop Beruhigungszeit
200 KBaud	tp ~ 13µs
1,5 MBaud	tp ~ 3µs

Umschaltzeit Daten tv \leq 300ns min. Periodendauer T = 600 ns Ausgang $I\Delta UI \geq 2V/20mA$ Eingang $I\Delta UI \geq 0.3V$

8.14 Digitale und analoge Ein- und Ausgänge


8.14.1 Analoge Eingänge (X3)

Der Servoverstärker besitzt zwei **programmierbare** Differenzeingänge für analoge Sollwerte.

Als Potentialbezug muss AGND (X3/1) immer mit CNC-GND der Steuerung verbunden werden.

Technische Eigenschaften

- Differenz-Eingangsspannung max. ± 10 V
- Auflösung 1,25 mV
- Bezugsmasse : AGND, Klemme X3/1
- Eingangswiderstand 20 kΩ
- Gleichtaktspannungsbereich für beide Eingänge zusätzlich ± 10 V
- Abtastrate 62,5 µs

Eingang Analog-In 1 (Klemmen X3/4-5)

Differenz-Eingangsspannungen von max. ± 10 V, Auflösung 14bit, skalierbar.

Standardeinstellung: Drehzahlsollwert

Eingang Analog-In 2 (Klemmen X3/6-7)

Differenz-Eingangsspannungen von max. ± 10 V, Auflösung 12bit, skalierbar.

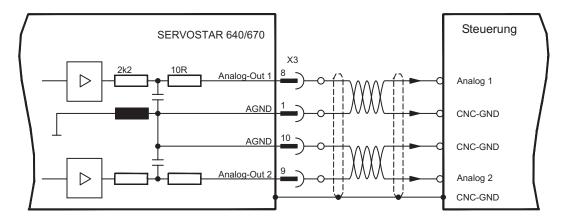
Standardeinstellung: Drehmomentsollwert

Verwendungsbeispiele für Sollwerteingang Analog-In2:

- einstellbare externe Strombegrenzung
- abgeschwächter Eingang für Einricht-/Tippbetrieb
- Vorsteuerung / Override

Drehrichtungszuordnung

Standardeinstellung: Rechtsdrehung der Motorwelle (Blick auf die Welle)


- Positive Spannung an Klemme X3/4 (+) gegen Klemme X3/5 () oder
- Positive Spannung an Klemme X3/6 (+) gegen Klemme X3/7 ()

Zur Umkehr des Drehsinns können Sie die Belegung der Klemmen X3/4-5 bzw. X3/6-7 vertauschen oder auf der Bildschirmseite "Drehzahlregler" den Parameter DREHRICHTUNG verändern.

8.14.2 Analoge Ausgänge (X3)

Technische Eigenschaften

- Bezugsmasse ist Analog-GND (AGND, Klemme X3/1 und X3/10)
- Ausgangswiderstand : 2,2kΩ— Ausgangsspannung ±10V
- Auflösung : 10bit.— Update rate: 62,5 μs

Programmierbare analoge Ausgänge Analog-Out 1 / Analog-Out 2

Sie können die Klemme X3/8 (Analog-Out 1) bzw. die Klemme X3/9 (Analog-Out 2) können die folgenden analogen Signale zugewiesen haben:

Standardeinstellung:

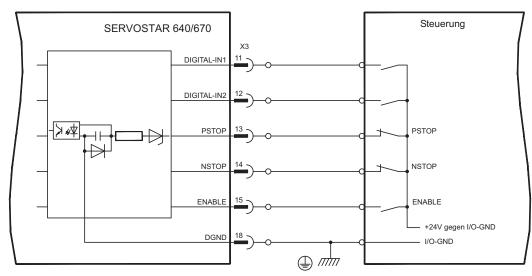
Analog-Out 1: Tachospannung **n**_{ist} (Drehzahl)

Der Ausgang liefert ±10V bei der eingestellten Enddrehzahl.

 $\textbf{Analog-Out 2} : \textbf{Strom-Istwert } \textbf{I}_{\textbf{ist}} \text{ (Drehmoment)}$

Der Ausgang liefert ± 10V für den eingestellten Spitzenstrom (Sinus-Effektivwert).

Sie können die Klemme X3/8 (Analog-Out 1) bzw. die Klemme X3/9 (Analog-Out 2) dazu verwenden, gewandelte analoge Werte von im Servoverstärker erfaßten digitalen Messwerten auszugeben.


Eine Liste der vorprogrammierten Funktionen finden Sie auf der Bildschirmseite "I/O analog" unserer Inbetriebnahmesoftware.

8.14.3 Digitale Eingänge (X3)

Alle digitalen Eingänge sind über Optokoppler potentialfrei gekoppelt.

Technische Eigenschaften

- Bezugsmasse ist **Digital**-GND (DGND, Klemme X3/18)
- Eingänge an X3 sind SPS-kompatibel (IEC 61131-2 Typ 1)
- High: 11...30 V / 2...11 mA, Low -3...+5 V / <1 mA</p>
- Abtastrate: 250 μs

Eingang Freigabe ENABLE

Sie geben die Endstufe des Servoverstärkers mit dem Freigabe- (Enable-) Signal frei (Klemme X3/15, Eingang 24V, **High-aktiv**).

Im gesperrten Zustand (Low signal) ist der angeschlossene Motor drehmomentfrei.

Programmierbare digitale Eingänge:

Sie können die digitalen Eingänge PSTOP / NSTOP / DIGITAL-IN1 und DIGITAL-IN2 dazu verwenden, im Servoverstärker abgespeicherte, vorprogrammierte Funktionen auszulösen.

Eine Liste der vorprogrammierten Funktionen finden Sie auf der Bildschirmseite "I/O digital" unserer Inbetriebnahmesoftware.

Wenn einem Eingang eine vorprogrammierte Funktion neu zugewiesen wird, muss der Datensatz im Eeprom des Servoverstärkers gespeichert und die 24V Hilfsspannungsversorgung des Servoverstärkers aus- und wieder eingeschaltet werden (Reset der Verstärkersoftware).

Endschalter PSTOP / NSTOP

Standardmäßig sind die Klemmen X3/13 und X3/14 für den Anschluss von Endschaltern programmiert. Wenn diese Eingänge nicht für den Anschluss von Endschaltern benötigt werden, können Sie sie für andere Eingangs-Funktionen nutzen.

Endschalter positiv/negativ (**PSTOP / NSTOP**, Klemmen X3/13 und X3/14), High-Pegel im Normalbetrieb (leitungsbruchsicher).

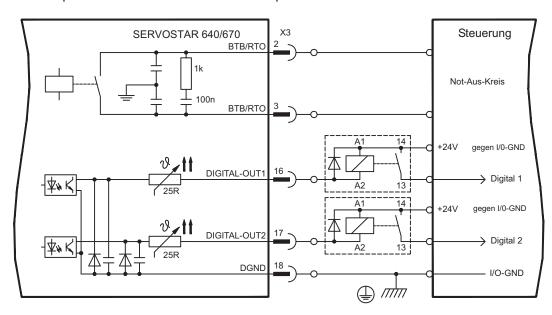
Ein Low-Signal (offen) sperrt die zugehörige Drehrichtung, die Rampen-Funktion bleibt wirksam.

DIGITAL-IN 1 / DIGITAL-IN 2

Sie können die digitalen Eingänge Klemme X3/11 (DIGITAL-IN 1) bzw. Klemme X3/12 (DIGITAL-IN 2) mit einer frei programmierbaren Funktion verknüpfen.

8.14.4 Digitale Ausgänge (X3)

Technische Eigenschaften


Bezugsmasse ist Digital-GND (DGND, Klemme X3/18)

Alle digitalen Ausgänge sind potentialfrei

DIGITAL-OUT1 und 2 : Open-Collector, max. 30V DC, 10mA

BTB/RTO : Relais-Ausgang, max. 30V DC oder 42V AC, 0.5A

— Update rate : 250 μs

Betriebsbereit-Kontakt BTB/RTO

Betriebsbereitschaft (Klemmen X3/2 und X3/3) wird über einen **potentialfreien** Relaiskontakt gemeldet.

Der Kontakt ist **geschlossen** bei betriebsbereitem Servoverstärker, die Meldung wird vom Freigabesignal, von der l²t- Begrenzung und von der Bremsschwelle **nicht** beeinflusst.

INFO

Alle Fehler führen zum Abfallen des BTB-Kontaktes und Abschalten der Endstufe (bei offenem BTB Kontakt ist die Endstufe gesperrt -> keine Leistung). Eine Liste der Fehlermeldungen finden Sie auf Seite 95.

Programmierbare digitale Ausgänge DIGITAL-OUT 1 / 2:

Sie können die digitalen Ausgänge DIGITAL-OUT1 (Klemme X3/16) und DIGITAL-OUT2 (Klemme X3/17) dazu verwenden, Meldungen von im Servoverstärker abgespeicherten, vorprogrammierten Funktionen auszugeben. Eine Liste der vorprogrammierten Funktionen finden Sie auf der Bildschirmseite "I/O digital" unserer Inbetriebnahmesoftware. Wenn einem Ausgang die Meldung einer vorprogrammierten Funktion neu zugewiesen wird, muss der Datensatz im Eeprom des Servoverstärkers gespeichert und die 24V Hilfsspannungsversorgung des Servoverstärkers aus- und wieder eingeschaltet werden (Reset der Verstärkersoftware).

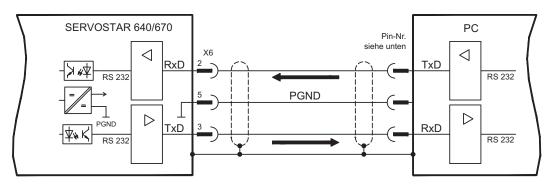
Werten Sie die Ausgänge über invertierende Interfaceklemmen aus (siehe Anschlussbild oben), wie z.B. Phönix DEK-REL-24/I/1 (Einschaltverzögerung: 6 ms, Ausschaltverzögerung: 16ms).

INFO

Die in der <u>Online Hilfe</u> der Inbetriebnahmesoftware beschriebene Logik (High- bzw. Low-aktiv) bezieht sich auf den Ausgang der invertierenden Interfaceklemmen. Beachten Sie die Verzögerungszeiten des verwendeten Relais!

8.15 RS232-Schnittstelle, PC-Anschluss (X6)

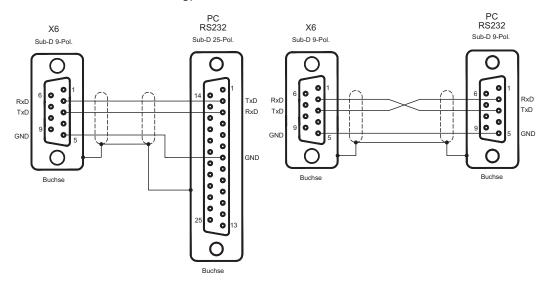
Das Einstellen der Betriebs-, Lageregelungs- und Fahrsatzparameter können Sie mit der Inbetriebnahmesoftware auf einem handelsüblichen Personal Computer (PC) erledigen.


Verbinden Sie die PC-Schnittstelle (X6) des Servoverstärkers bei abgeschalteten Versorgungsspannungen über eine Nullmodem-Leitung mit einer seriellen Schnittstelle des PC.

INFO

Verwenden Sie keine Nullmodem-Link Leitung!

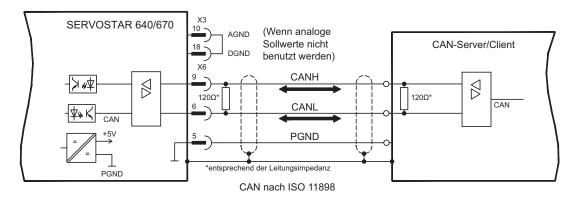
Die Schnittstelle ist über Optokoppler galvanisch getrennt und liegt auf dem gleichen Potential wie die CANopen-Schnittstelle.


Die Schnittstelle wird in der Inbetriebnahmesoftware angewählt und eingestellt. Weitere Hinweise finden Sie auf Seite 79 .

Mit dem optionalen Erweiterungsmodul -2CAN- werden die beiden Schnittstellen RS232 und CAN, die denselben Stecker X6 belegen, auf zwei Stecker verteilt (⇒ S.111).

Übertragungsleitung zwischen PC und Servoverstärker der Serie SERVOSTAR 640/670:

(Ansicht: Draufsicht auf die eingebauten SubD-Stecker, dies entspricht der Lötseite der SubD-Buchsen an der Leitung)


8.16 CANopen Schnittstelle (X6)

Schnittstelle zum Anschluss an den CAN Bus (default : 500 kBaud). Das integrierte Profil basiert auf dem Kommunikationsprofil CANopen DS301 und dem Antriebsprofil DSP402. Im Zusammenhang mit dem Lageregler werden u.a. folgende Funktionen bereitgestellt: Tippen mit variabler Geschwindigkeit, Referenzfahren, Fahrauftrag starten, Direktfahrauftrag starten, digitale Sollwertvorgabe, Datentransferfunktionen und viele andere. Detaillierte Informationen finden Sie im CANopen-Handbuch. Die Schnittstelle ist über Optokoppler galvanisch getrennt und liegt auf dem gleichen Potential wie das RS232-Interface. Die analogen Sollwerteingänge sind weiterhin nutzbar. Mit dem optionalen Erweiterungsmodul -2CAN- werden die beiden Schnittstellen RS232 und CAN, die denselben Stecker X6 belegen, auf zwei Stecker verteilt (

S.111).

INFO

AGND und DGND (Stecker X3) müssen gebrückt werden!

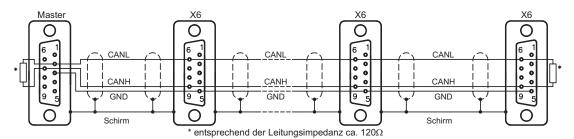
CAN Buskabel

Nach ISO 11898 sollten Sie eine Busleitung mit einem Wellenwiderstand von 120 Ω verwenden. Die verwendbare Leitungslänge für eine sichere Kommunikation nimmt mit zunehmender Übertragungsrate ab. Als Anhaltspunkte können folgende bei uns gemessenen Werte dienen, sie sind allerdings nicht als Grenzwerte zu verstehen:

Leitungsdaten: Wellenwiderstand 100-120 Ω

Betriebskapazität max. 60 nF/km Leiterwiderstand (Schleife) 159,8 Ω /km

Leitungslängen in Abhängigkeit von der Übertragungsraten


Übertragungsrate / kBaud	max. Leitungslänge / m
1000	20
500	70
250	115

Mit geringerer Betriebskapazität (max. 30 nF/km) und geringerem Leiterwiderstand (Schleife, 115 Ω /km) können größere Übertragungsweiten erreicht werden.

(Wellenwiderstand 150 \pm 5 Ω \Rightarrow Abschlusswiderstand 150 \pm 5 Ω).

An das SubD-Steckergehäuse stellen wir aus EMV-Gründen folgende Anforderung:

- metallisches oder metallisch beschichtetes Gehäuse
- Anschlussmöglichkeit für den Leitungsschirm im Gehäuse, großflächige Verbindung

8.17 Wiederanlaufsperre -AS- nach EN 954-1

Eine häufig gestellte Applikationsaufgabe ist der Schutz von Antrieben gegen Wiederanlauf. Dies kann nicht durch eine elektronische Sperre erreicht werden, sondern muss mit mechanischen Elementen (zwangsgeführte Relaiskontakte) realisiert werden.

Ein Sicherheitsrelais im Servoverstärker wird von der SPS oder manuell angesteuert. Über zwangsgeführte Schaltglieder wird die Endstufe des Servoverstärkers sicher abgeschaltet, der Sollwerteingang des Servoverstärkers gesperrt und eine Meldung an den Sicherheitskreis ausgegeben.

Die Anschlussbeispiele erfüllen Sicherheitskategorie 1 nach EN 954-1 bzw. mit zusätzlichem Sicherheitsrelais (z.B. PNOZ von Firma Pilz) auch die Kategorie 3.

Vorteile der Anlaufsperre -AS-:

- Zwischenkreis bleibt aufgeladen, da der Hauptstromkreis aktiv bleibt
- Es wird nur Kleinspannung geschaltet, daher kein Kontaktverschleiß
- der Verdrahtungsaufwand ist sehr gering

Fahren einzelner Achsen oder Achsengruppen im Einrichtbetrieb

Im Einrichtbetrieb halten sich häufig Personen im Gefahrenbereich der Maschine auf. Im Allgemeinen wird das Verfahren der Achsen über Zustimmungsschalter gesteuert. Zusätzliches Abschalten der nicht verwendeten Achsen über die Anlaufsperre erhöht die Sicherheit und vermeidet das ständige Schalten von Netz- oder Motorschützen.

Abschalten gruppierter Achsen bei getrennten Arbeitsbereichen

Auch wenn mehrere SERVOSTAR 640/670 an einem gemeinsamen Netz- und Zwischenkreisanschluss arbeiten, können Gruppen für getrennte Arbeitsbereiche eingerichtet werden, die getrennt voneinander abgeschaltet werden können.

ACHTUNG

Der Servoverstärker SERVOSTAR 640/670 verfügt über keine Sicherheitsfunktion nach EN 61800-5-2. Die optionale Anlaufsperre -AS- ist nicht mit der Sicherheitsfunktion STO gleichzusetzen. Die beschriebene AS Funktion ist nach EN 945-1 abgenommen. Diese Norm ist seit dem 31.12.2012 nicht mehr unter der Maschinenrichtlinie (2006/42/EG) gelistet. Die Anforderungen, die nach EN 945-1 an den Servorverstärker gestellt werden um eine Wiederanlaufsperre umzusetzen, werden weiterhin erfüllt.

8.17.1 Wichtige Hinweise

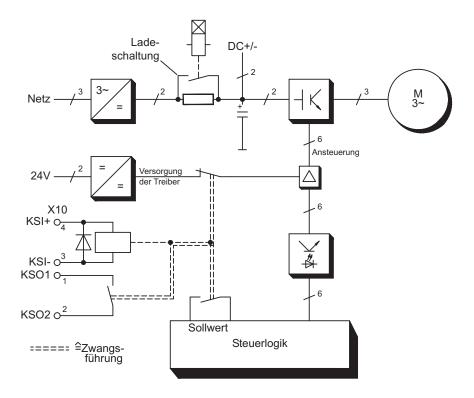
- Beachten Sie die "Bestimmungsgemäße Verwendung" auf Seite 72.
- Die Überwachungskontakte (KSO1/2) jedes Verstärkers mit verwendeter Anlaufsperre -AS- müssen in den Steuerstromkreis eingebunden sein. Nur so kann eine Fehlfunktion des internen Sicherheitsrelais oder ein Kabelbruch erkannt werden.
- Wenn die Anlaufsperre von einer Steuerung automatisch angesteuert wird (KSI1/2), muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird. Damit kann verhindert werden, dass durch einen fehlerhaften Ausgang der Steuerung die Anlaufsperre -AS- bei laufendem Motor angesteuert wird.
- Die folgende Funktionsreihenfolge muss unbedingt eingehalten werden :
 - 1. Antrieb geregelt abbremsen (Drehzahl Sollwert = 0V)
 - 2. Bei Drehzahl = 0 min⁻¹ Servoverstärker sperren (Freigabe = 0V)
 - 3. Bei hängender Last den Antrieb zusätzlich mechanisch blockieren
 - 4. Anlaufsperre -AS- ansteuern

8.17.2 Bestimmungsgemäße Verwendung

Die Anlaufsperre -AS- ist **ausschließlich** dazu bestimmt, einen Antrieb gegen Wiederanlauf zu sichern. Die Schaltung muss die Sicherheitsanforderungen der EN60204, EN12100 und EN 954-1 erfüllen.

Die Anlaufsperre -AS- darf nur aktiviert werden,

- wenn der Motor nicht mehr dreht (Sollwert 0V, Drehzahl 0min⁻¹, Enable 0V).
 Antriebe mit hängender Last müssen zusätzlich mechanisch sicher blockiert werden (z.B. mit der Motorhaltebremse).
- wenn die Überwachungskontakte (KSO1/2) aller Servoverstärker in den Steuerstromkreis eingebunden sind.


Die Anlaufsperre -AS- darf **nur** von einer CNC angesteuert werden, wenn die Ansteuerung des internen Sicherheitsrelais redundant überwacht wird.

Die Anlaufsperre -AS- darf **nicht** verwendet werden, wenn der Antrieb aus folgenden Gründen

stillgesetzt werden soll:

- Reinigungs-, Wartungs- und Instandsetzungsarbeiten oder lange Betriebsunterbrechungen. In diesen Fällen muss die gesamte Anlage vom Personal spannungsfrei geschaltet und gesichert werden (Hauptschalter)
- Not-Aus Situationen
 Im Not-Aus Fall wird das Netzschütz abgeschaltet (Not-Aus Taster)

8.17.3 Blockschaltbild

8.17.4 Funktionsbeschreibung

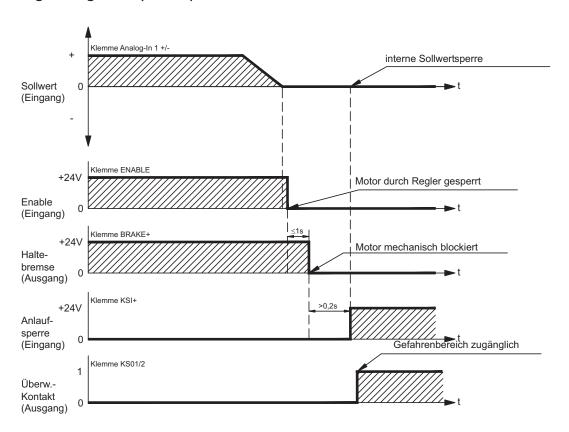
In der Frontplatte des SERVOSTAR 640/670 ist der Stecker X10 angebracht. Auf diesem Stecker werden über 4 Klemmen die Wicklunganschlüsse eines Sicherheitsrelais und ein Schließerkontakt dieses Relais zu Verfügung gestellt.

Das 24V DC-Sicherheitsrelais im Servoverstärker (TÜV abgenommen) wird von außen angesteuert. Alle Schaltkontakte des Relais sind zwangsgeführt.

Zwei Schaltkontakte schalten im Servoverstärker die Treiberversorgung der Endstufe ab und legen das interne Sollwertsignal auf AGND (0 V).

Der Überwachungskontakt (Schließer) wird in den Steuerstromkreis eingeschleift.

Ist das Sicherheitsrelais nicht angesteuert, ist der Überwachungskontakt geöffnet und der Servoverstärker ist betriebsbereit.

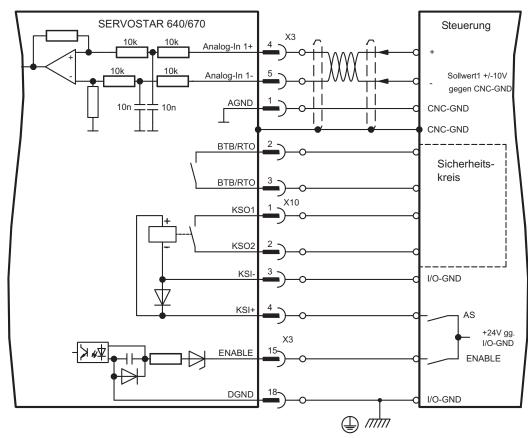

Wenn der Antrieb elektronisch abgebremst, der Servoverstärker gesperrt und die Motorhaltebremse eingefallen ist, wird das Sicherheitsrelais angesteuert (manuell oder von der Steuerung).

Die Spannungsversorgung der Endstufentreiberschaltung wird vom Relais sicher abgeschaltet, der interne Sollwert auf 0V gelegt und der Überwachungskontakt überbrückt im Steuerstromkreis der Anlage die Sicherheitslogik (Überwachung von Schutztüren o.ä.)

Selbst bei zerstörter Endstufe oder Ansteuerung ist kein Anlauf des Motors möglich, da das hierzu erforderliche Drehfeld nicht entstehen kann.

Falls das Sicherheitsrelais selbst einen Fehler hat, kann der Überwachungskontakt die Sicherheitslogik der Anlage nicht überbrücken. Ein Öffnen der Schutzeinrichtungen schaltet dann die Anlage ab.

8.17.5 Signaldiagramm (Ablauf)

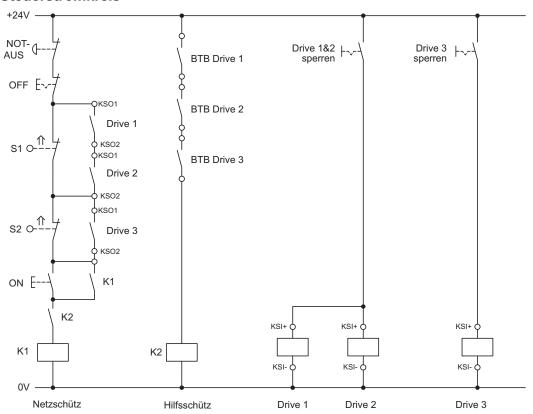

8.17.6 Funktionsprüfung

ACHTUNG

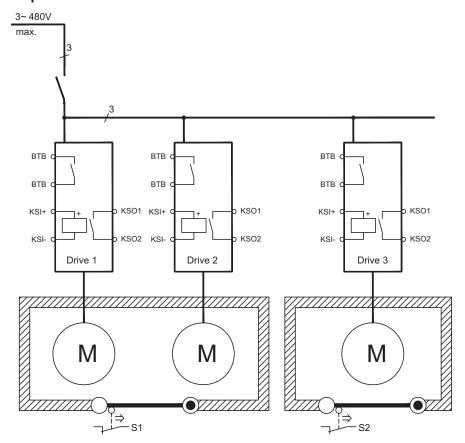
Bei Erstinbetriebnahme und nach jedem Eingriff in die Verdrahtung der Anlage oder nach Austausch einer oder mehrerer Komponenten der Anlage muss die Funktion der Anlaufsperre überprüft werden.

- 1. Alle Antriebe mit Sollwert 0V stillsetzen, hängende Last mechanisch blockieren, Enable=0V
- 2. Anlaufsperre -AS- ansteuern.
- 3. Schutzgitter öffnen (Schutzbereich jedoch nicht betreten)
- 4. Stecker X10 von einem Verstärker abziehen: Das Netzschütz muss nun abfallen
- 5. Stecker X10 wieder aufstecken. Netzschütz wieder einschalten.
- 6. Schritte 4 und 5 für jeden Servoverstärker einzeln wiederholen.

8.17.7 Anschlussbild (Prinzip)

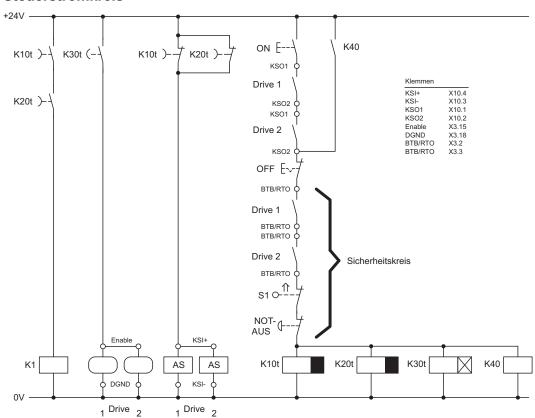

INFO

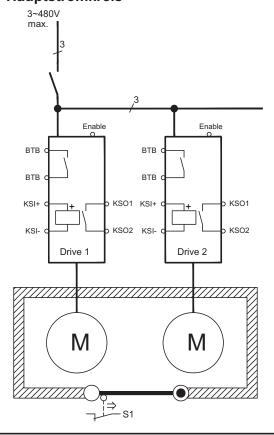
Anwendungsbeispiele für Kategorie 1 siehe Kap. 8.17.8.


8.17.8 Anwendungsbeispiel Kategorie 1 nach EN954-1

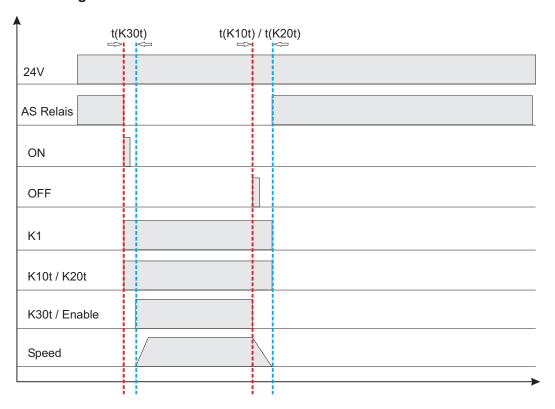
Mit Stopp- und Not-Halt-Kategorie 0.

8.17.8.1 Steuerstromkreis


8.17.8.2 Hauptstromkreis


8.17.9 Anwendungsbeispiel Kategorie 3 nach EN954-1

Mit Stopp- und Not-Halt-Kategorie 1.


8.17.9.1 Steuerstromkreis

8.17.9.2 Hauptstromkreis

8.17.9.3 Ablaufdiagramm

 $t(K30t) \ge 500ms$

t(K10t) und **t(K20t)** halten den Antrieb aktiv bis zum Stillstand der Achse. Diese Zeit ist Applikationsabhängig und muss länger sein als die Bremsrampe.

INFO

Nach Ablauf von t(K10t) und t(K20t) muss der Antrieb sicher stillgesetzt sein. Nach Ablauf dieser Zeiten ist kein aktives Bremsen mit dem Servoverstärker mehr möglich.

9 Inbetriebnahme

Das Vorgehen bei einer Inbetriebnahme wird exemplarisch beschrieben. Je nach Einsatz der Geräte kann ein anderes Vorgehen sinnvoll oder erforderlich sein. Nehmen Sie bei Mehrachs-Systemen jeden Servoverstärker einzeln in Betrieb.

Vor der Inbetriebnahme muss der Maschinenhersteller eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.

9.1 Wichtige Hinweise

▲ GEFAHR Tödliche Spannung!

Gefahr eines elektrischen Schlags. An spannungsführenden Teilen besteht unmittelbare Lebensgefahr.

- Verbaute Schutzmaßnahmen wie Isolationen oder Abschirmungen dürfen nicht entfernt werden.
- Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.

WARNUNG Automatischer Anlauf!

Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung automatisch anlaufen. Wenn der Parameter <u>AENA</u> auf 1 gesetzt ist,

- warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und
- stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten

ACHTUNG

Wenn der Servoverstärker länger als 1 Jahr gelagert wurde, müssen die Zwischenkreiskondensatoren neu formiert werden.

Lösen Sie hierzu alle elektrischen Anschlüsse. Versorgen Sie den Servoverstärker etwa 30min einphasig mit 230V AC an den Klemmen L1 / L2. Dadurch werden die Kondensatoren neu formiert.

INFO

Weiterführende Informationen zur Inbetriebnahme:

Das Anpassen von Parametern und die Auswirkungen auf das Regelverhalten wird in der Online Hilfe der Inbetriebnahmesoftware beschrieben.

Die Inbetriebnahme der eventuell vorhandenen Erweiterungskarte wird in der jeweils zugehörigen Bedienungsanleitung auf der CD-ROM beschrieben.

Weiterführendes Wissen vermitteln wir Ihnen in Schulungskursen (auf Anfrage).

9.2 Inbetriebnahmesoftware

9.2.1 Allgemeines

Dieses Kapitel erläutert die Installation der Inbetriebnahmesoftware für den digitalen Servoverstärker SERVOSTAR 640/670.

Wir bieten auf Anfrage Schulungs- und Einarbeitungskurse an.

9.2.1.1 Bestimmungsgemäße Verwendung

Die Inbetriebnahmesoftware ist dazu bestimmt, die Betriebsparameter der Servoverstärker der Serie SERVOSTAR 640/670 zu ändern und zu speichern. Der angeschlossene Servoverstärker wird mit Hilfe der Software in Betrieb genommen — dabei kann der Antrieb mit den Service-

Funktionen direkt gesteuert werden.

Das Online Parametrieren eines laufenden Antriebs ist ausschließlich Fachpersonal mit den auf Seite 7 beschriebenen Fachkenntnissen erlaubt.

Auf Datenträger gespeicherte Datensätze sind nicht gesichert gegen ungewollte Veränderung durch Dritte. Nach Laden eines Datensatzes müssen Sie daher grundsätzlich alle Parameter prüfen, bevor Sie den Servoverstärker freigeben.

9.2.1.2 Software Beschreibung

Die Servoverstärker müssen an die Gegebenheiten Ihrer Maschine angepasst werden. Diese Parametrierung nehmen Sie meist nicht am Verstärker selbst vor, sondern an einem Personal-Computer (PC) mit Hilfe der Inbetriebnahmesoftware. Der PC ist mit einer Nullmodem-Leitung (seriell) mit dem Servoverstärker verbunden (siehe S. 69). Die Inbetriebnahmesoftware stellt die Kommunikation zwischen PC und SERVOSTAR 640/670 her.

Sie finden die Inbetriebnahmesoftware auf der beiliegenden CD-ROM und auf unsere Internetseite im Downloadbereich.

Sie können mit wenig Aufwand Parameter ändern und die Wirkung sofort am Antrieb erkennen, da eine ständige Verbindung (online Verbindung) zum Verstärker besteht. Gleichzeitig werden wichtige Istwerte aus dem Verstärker eingelesen und am PC-Monitor angezeigt

(Oszilloskop-Funktionen).

Eventuell im Verstärker eingebaute Interface-Module (Erweiterungskarten) werden automatisch erkannt und die erforderlichen zusätzlichen Parameter zur Lageregelung oder Fahrsatzdefinition zur Verfügung gestellt.

Sie können Datensätze auf einem Datenträger speichern (archivieren) und wieder laden. Die Datensätze können Sie ausdrucken.

Wir liefern Ihnen motorbezogene Default-Datensätze für alle sinnvollen Servoverstärker-Motor-Kombinationen. In den meisten Anwendungsfällen werden Sie mit diesen Defaultwerten Ihren Antrieb problemlos in Betrieb nehmen können.

Eine umfangreiche <u>Online Hilfe</u> mit integrierter Beschreibung aller Variablen und Funktionen unterstützt Sie in jeder Situation.

9.2.1.3 Hardware Voraussetzungen

Die PC-Schnittstelle (X6, RS232) des Servoverstärkers wird über eine Nullmodem-Leitung (**keine Nullmodem-Link Leitung !**) mit einer seriellen Schnittstelle des PC verbunden (⇒ S.69).

ACHTUNG

Ziehen und stecken Sie die Verbindungsleitung nur bei abgeschalteten Versorgungsspannungen (Verstärker und PC).

Die Schnittstelle im Servoverstärker ist über Optokoppler galvanisch getrennt und liegt auf gleichem Potential wie das CANopen-Interface.

Minimale Anforderungen an den PC:

Prozessor : mindestens Pentium[®] II oder vergleichbar

Betriebssystem : WINDOWS

Grafikkarte : Windows kompatibel, Farbe Laufwerk : Festplatte (mindestens 10 MB frei)

CD-ROM Laufwerk

Arbeitsspeicher : mindestens 8MB

Schnittstelle : eine freie serielle Schnittstelle (COM1 bis COM10)

9.2.1.4 Betriebssysteme

WINDOWS 95(c) / 98 / 2000 / ME / NT / XP / Vista / 7

DRIVE.EXE ist lauffähig unter WINDOWS 95(c) / 98 / 2000 / ME / NT 4.0 / XP / Vista / 7. Das Hilfesystem ist bei Windows 95a und 95b nicht verwendbar.

WINDOWS FÜR WORKGROUPS 3.xx, DOS, OS2

DRIVE.EXE ist nicht lauffähig unter WINDOWS 3.xx, DOS und OS2.

Eine Notbedienung ist mit einer ASCII-Terminal-Emulation (ohne Oberfläche) möglich. Interface-Einstellung: 9600 Baud, kein Parity, kein Handshake.

Unix, Linux

Die Funktion der Software unter Unix oder Linux in WINDOWS Fenstern ist nicht getestet.

WINDOW 8, 10

DRIVE.EXE ist nicht getestet unter WINDOWS 8 und 10.

9.2.2 Installation unter Windows

Auf der CD-ROM befindet sich das Installationsprogramm für die Setup Software.

Installieren

Autostart Funktion aktiviert:

Legen sie die CD-ROM in ein freies Laufwerk ein. Es öffnet sich ein Fenster mit dem Startbildschirm der CD. Dort finden Sie eine Verknüpfung zur Inbetriebnahmesoftware DRIVE.EXE. Klicken Sie darauf und folgen sie den Anweisungen.

Autostartfunktion deaktiviert:

Legen sie die CD-ROM in ein freies Laufwerk ein. Klicken Sie auf **START** (Task-Leiste), dann auf **Ausführen**. Geben Sie im Eingabefenster den Programmaufruf : **x:\index.htm** (x= korrekter CD-Laufwerksbuchstabe) ein.

Klicken Sie OK und gehen dann wie oben beschrieben vor.

Anschluss an serielle Schnittstelle des PC

Schließen Sie die Übertragungs-Leitung an eine serielle Schnittstelle Ihres PC und an die serielle Schnittstelle (X6) des SERVOSTAR 640/670 an (⇒ S.69).

9.3 Quickstart, Schnelltest des Antriebs

9.3.1 Vorbereitung

Auspacken, Montieren und Verdrahten des Servoverstärkers

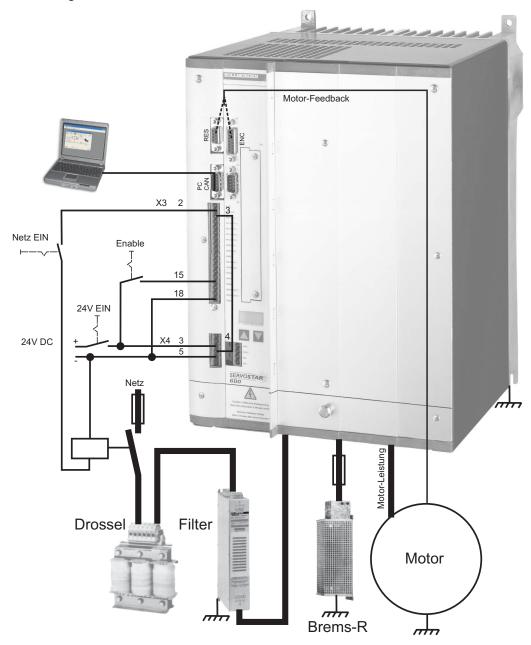
- 1. Servoverstärker und Zubehör aus der Verpackung nehmen.
- 2. Warnhinweise in den Handbüchern beachten.
- 3. Servoverstärker wie in Kapitel 7.3 beschrieben montieren.
- 4. Servoverstärker wie in Kapitel 8.3 beschrieben verdrahten oder verwenden Sie die Minimalverdrahtung für den Schnelltest aus Kapitel 9.3.1.
- 5. Installieren Sie die Software wie in Kapitel 9.2 beschrieben.
- 6. Sie benötigen folgende Informationen über die Antriebskomponenten:
 - Netznennspannung
 - Motortyp (Motordaten, wenn der Motor nicht in der Motordatenbank zu finden ist, siehe Online Hilfe
 - im Motor eingebaute Rückführeinheit (Typ, Polzahl/Strichzahl/Daten-Protokoll etc.)
 - Tragheitsmoment der Last

Dokumentationen

Sie benötigen folgende Dokumentationen (im PDF Format auf der Produkt-CDROM, Sie können die jeweils aktuellste Version eines Handbuchs von unserer Website herunterladen):

- Betriebsanleitung (vorliegendes Handbuch)
- Handbuch CANopen Kommunikationsprofil
- Zubehörhandbuch

Abhängig von der eingebauten Erweiterungskarte benötigen Sie eine der folgenden Dokumentationen:


- Handbuch PROFIBUS DP Kommunikationsprofil
- Handbuch DeviceNet Kommunikationsprofil
- Handbuch SERCOS Kommunikationsprofil
- Handbuch EtherCAT Kommunikationsprofil

Sie benötigen den Acrobat Reader um die PDF Dateien zu lesen. Einen Installationslink finden Sie auf jeder Bildschirmseite der Produkt-CDROM.

Minimal erforderliche Verdrahtung für den Schnelltest

INFO

Diese Verdrahtung erfüllt keinerlei Anforderungen an die Sicherheit oder Funktionstüchtigkeit Ihrer Anwendung. Sie zeigt lediglich die für den Schnelltest erforderliche Mindestverdrahtung.

9.3.2 Verbinden

 Schließen Sie die serielle Übertragungsleitung an eine serielle Schnittstelle Ihres PC und an die serielle Schnittstelle X6 des Servoverstärkers an. Optional ist der Einsatz eines USB - Seriell Konverters möglich.

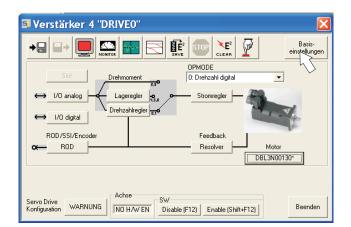
- Schalten Sie die 24 V-Spannungsversorgung des Servoverstärkers ein.
- Warten Sie etwa 30s, bis die Anzeige in der Frontplatte des Servoverstärker die Stromtype (z.B. ♣ ♣ für 40 A) anzeigt. Ist die Leistungsversorgung ebenfalls zu geschaltet, wird ein führendes P (z.B. ♣ ♣ für Power, 40 A) angezeigt.

INFO

Klicken Sie zum Start der Software auf Ihrem Windows Desktop auf das DRIVE.EXE-Icon.

DRIVE.EXE bietet die Möglichkeit, offline oder online zu arbeiten.

Wir arbeiten **online**. Wählen Sie dazu die Schnittstelle, an die der Servoverstärker angeschlossen ist.


Die Software versucht nun, eine Verbindung zum Servoverstärker aufzubauen. Wenn keine Kommunikation zustande kommt, erhalten Sie diese Fehlermeldung:

Häufige Ursachen sind:

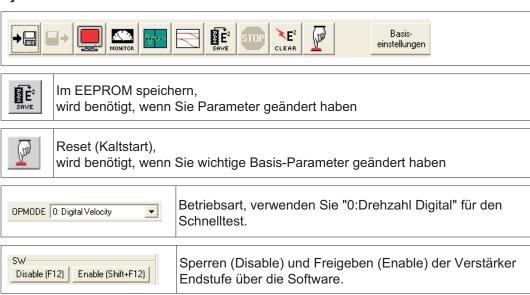
- Falsche Schnittstelle gewählt
- Falsche Stecker am Verstärker gewählt
- Schnittstelle von anderer Software belegt
- 24V Hilfsspannungsversorgung ausgeschaltet
- Übertragungsleitung defekt oder falsch konfektioniert

Bestätigen Sie die Fehlermeldung. Suchen und beseitigen Sie den Fehler, der die Kommunikation verhindert. Starten Sie die Software erneut.

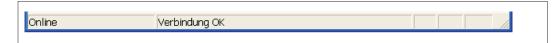
Wenn eine Kommunikation zustande kommt, werden die Parameter aus dem Servoverstärker ausgelesen. Danach sehen Sie den Startbildschirm.

ACHTUNG

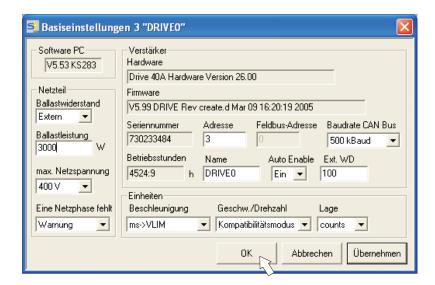
Vergewissern Sie sich, dass der Verstärker gesperrt ist: (Eingang HW-Enable Klemme X3/15 0V oder offen)!


9.3.3 Wichtige Bildschirmelemente

Hilfefunktion


In der Online Hilfe finden Sie detaillierte Informationen zu allen Parametern, die vom Servoverstärker verarbeitet werden können.

Taste F1	startet die Online Hilfe zur aktiven Bildschirmseite	
Menüleiste ? oder	startet die Online Hilfe mit Inhaltsverzeichnis	
Online HTML Help	Startet die Offinie Finie IIII IIIIansverzeichnis	


Symbolleiste

Statusleiste

9.3.4 Basiseinstellungen

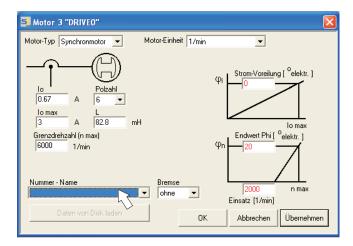
Wählen Sie im Startbildschirm die Schaltfläche "Basiseinstellungen".

Ballastwiderstand: Auch Bremswiderstand genannt. Wählen Sie "extern".

Ballastleistung: Geben Sie die Leistung des angeschlossenen Bremswiderstandes in Watt ein.

max. Netzspannung: Vorhandene Netznennspannung einstellen

Eine Netzphase fehlt: Sie können entscheiden, ob bei Fehlen einer Netzphase die Warnung "n05" oder der Fehler "F19" erzeugt wird. "F19" führt zum Abschalten der Endstufe, "n05" wird als Meldung behandelt.


Einheiten: Beschleunigung, Geschw./Drehzahl, Lage

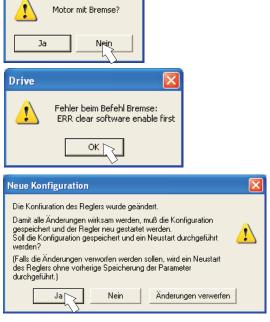
Wählen Sie sinnvolle Einheiten für Ihre Anwendung bezogen auf die bewegte Last.

Alle anderen Einstellungen lassen Sie unverändert.

Klicken Sie auf OK. Klicken Sie im Startbildschirm auf die Schaltfläche "Motor".

9.3.5 Motor (synchron)

Drücken Sie Funktionstaste F12 (SW disable) bevor Sie Motor Parameter ändern.


Motor-Typ: Wählen Sie "Synchronmotor". Wenn Sie einen Linearmotor oder einen Asynchronmotor verwenden, wenden Sie sich an unseren Kundendienst.

Nummer - Name: Klicken Sie auf das Listenfeld, die im Servoverstärker gespeicherte Motortabelle wird geladen. Suchen Sie den angeschlossenen Motor in der Liste und wählen Sie ihn aus. Wenn Ihr Motor nicht gelistet ist, wenden Sie sich an unseren Kundendienst

Lassen Sie für den Schnelltest alle anderen Felder unverändert.

Klicken Sie die OK Schaltfläche.

Drive

Wenn Ihr Motor eine eingebaute Bremse hat, wählen Sie "Ja", ansonsten "Nein".

Wenn Software Enable aktiv ist, erscheint eine Warnung. Sie können fortfahren, aber nachdem der Verstärker neu gestartet wurde, müssen Sie prüfen, ob die Haltebremse korrekt konfiguriert ist. Klicken Sie "OK".

Die Parameter werden nun ins RAM des Servoverstärkers geladen (dauert einige Sekunden). Danach müssen Sie die Änderung der Konfiguration noch einmal bestätigen (oder verwerfen).

Wenn Sie "Ja" wählen, werden die Parameter im EEPROM des Servoverstärkers gespeichert und ein Reset wird ausgelöst (Kaltstart), dies dauert einige Sekunden.

Klicken Sie im Startbildschirm auf die Schaltfläche "Feedback".

9.3.6 Feedback

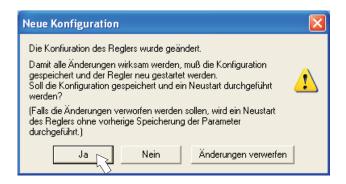
Drücken Sie Funktionstaste F12 (SW Disable) bevor Sie Feedback Parameter ändern.

Rückführung:

Wählen Sie das verwendete Rückführsystem aus.

Lassen Sie alle anderen Felder unverändert.

Wenn Software Enable aktiv ist, erscheint eine Warnung. Die Änderung der Konfiguration kann nicht durchgeführt werden.


Quittieren Sie die Meldungen, drücken Sie F12 (SW Disable) und beginnen Sie die Feedback-Auswahl erneut.

Ist alles in Ordnung, startet der Paramater-Upload (bereits für die Motorauswahl beschrieben).

Wenn Sie "Ja" wählen, werden die Parameter im EEPROM des Servoverstärkers gespeichert und ein Reset wird ausgelöst (Kaltstart), dies dauert einige Sekunden.

9.3.7 Parameter speichern und Neustart

Sie sind dabei, die Basisinstallation zu beenden und Sie haben Parameter geändert/eingestellt. Abhängig davon, welche Parameter Sie geändert haben, gibt es nun zwei mögliche Reaktionen des Systems:

Wichtige Konfigurations-Parameter wurden geändert

Eine Warnung erscheint, dass Sie den Verstärker neu starten müssen (Kaltstart). Klicken Sie auf JA. Die Parameter werden nun automatisch im EEPROM des Servoverstärkers gespeichert und ein Reset Kommando startet den Verstärker neu (dauert einige Sekunden). Dies geschah z.B. nach Änderung des Motortyps bzw. des Feedbacks.

Weniger wichtige Parameter wurden geändert

Es erscheint keine Warnung. Sichern Sie die Parameter manuell im EEPROM des Servo-

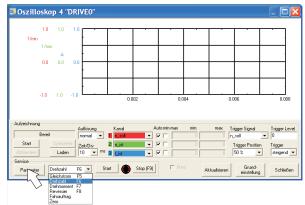
verstärkers. Klicken Sie dazu auf das Symbol des Verstärkers ist nicht notwendig.

in der Symbolleiste. Ein Neustart

Servoverstärker zurücksetzen (Reset)

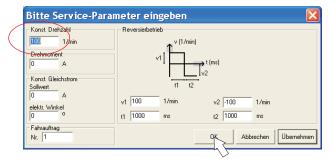
Sie können den Verstärker manuell zurücksetzen (Reset, z.B. im Fehlerfall).

Klicken Sie auf das Symbol



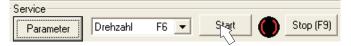
9.3.8 Tippbetrieb (Konstante Drehzahl)

ACHTUNG


Sorgen Sie dafür, dass die aktuelle Position der Last die nachfolgenden Bewegungen zulässt. Die Achse fährt sonst auf die Hardware-Endschalter oder den mechanischen Anschlag. Stellen Sie sicher, dass ein Ruck oder eine schnelle Beschleunigung der Last keinen Schaden verursachen kann.

- Schalten Sie die Leistungsversorgung des Antriebs ein.
- Hardware-Enable: +24 V an Enable [X3/15].
- Software-Enable: Klicken Sie auf Enable (Shift+F12) auf dem Startbildschirm oder benutzen Sie die Tastenkombination Shift+F12. Die Anzeige in der Frontplatte meldet nun E und die Stromstärke (z.B. 🖁 🖁 🖁 für Enable, 40A)
- Klicken Sie auf das Symbol Oszilloskop , die Seite öffnet sich:

Wählen Sie Service-Modus "Drehzahl F6", klicken Sie dann auf

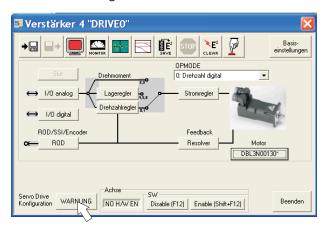


 Geben Sie die gewünschte, sichere Geschwindigkeit bei "Konst. Drehzahl" ein. Das Vorzeichen definiert die Bewegungsrichtung.

ACHTUNG

Beachten Sie die Anforderungen an "sichere reduzierte Geschwindigkeit" für Ihre Anwendung!

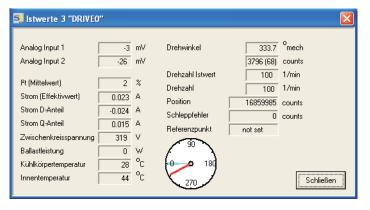
- Klicken Sie auf OK.
- Starten Sie die Servicefunktion (Schaltfläche Start oder F6).


Quittieren Sie die Sicherheitsabfrage.

Der Opmode wird auf 0 geschaltet und die Endstufe wird automatisch freigegeben. Das Funktionssymbol wechselt die Farbe nach grün, solange die Funktion aktiv ist.

- Die Funktion ist solange aktiv, bis Sie die Schaltfläche Stop betätigen oder die Funktionstaste F9 drücken.
- Die Endstufe kann mit der Funktionstaste F12 gesperrt (disable) werden.

9.3.9 Status

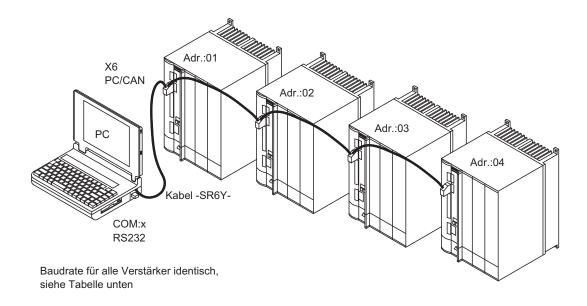

Aktuelle Warnungen und Fehler werden auf der Bildschirmseite **Status** gelistet, die Sie im Startbildschirm über die Schaltfläche "Status" aufrufen können. Diese Schaltfläche meldet den aktuellen Status des Servoverstärkers und erscheint daher mit unterschiedlichen Beschriftungen.

Die Reset Schaltflache kann verwendet werden, um einige Fehler zurückzusetzen. Eine Beschreibung der Fehler-/Warnmeldungen finden Sie auf Seite 95. Nun haben Sie die Grundfunktionen des Antriebs erfolgreich in Betrieb genommen und getestet.

9.3.10 **Monitor**

Klicken Sie auf das Symbol

"Monitor"


Der Monitor zeigt alle wichtigen mechanischen und elektrischen Istwerte des Antriebs.

9.3.11 Weitere Einstellmöglichkeiten

Für alle weiteren Einstellmöglichkeiten finden Sie ausführliche Hinweise in der Online-Hilfe und in der dort integrierten ASCII Objekt Referenz.

9.4 Mehrachssysteme

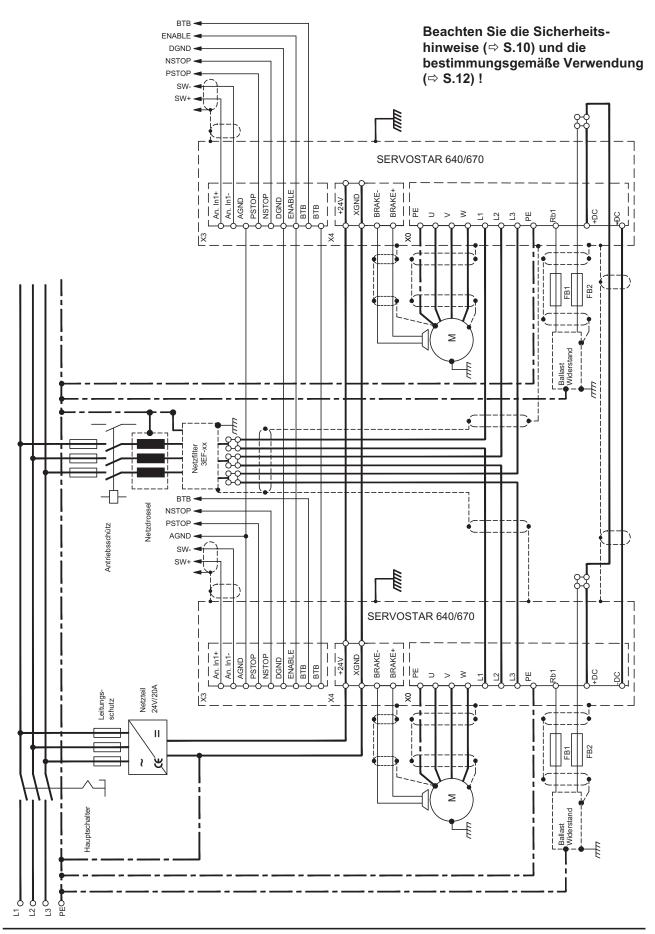
Sie können bis zu sechs Servoverstärker über ein spezielles Kabel verbinden und an Ihren PC anschließen: Kabeltyp -SR6Y- (für 4 Verstärker) oder -SR6Y6- (für 6 Verstärker).

Angeschlossen an nur einem Servoverstärker können Sie mit der Inbetriebnahmesoftware nun alle Verstärker über die eingestellten Stationsadressen anwählen und parametrieren.

9.4.1 Stationsadresse für CAN-Bus

Bei der Inbetriebnahme ist es sinnvoll, die Stationsadressen der einzelnen Verstärker und die Baudrate für die Kommunikation vorab über die Frontplattentastatur einzustellen (⇒ S.94).

9.4.2 Baudrate für CAN-Bus

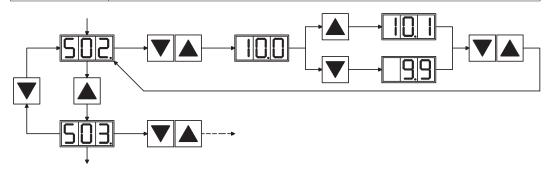

INFO

Nach Verändern der Stationsadresse und Baudrate müssen Sie die 24V-Hilfsspannungsversorgung der Servoverstärker aus- und wieder einschalten.

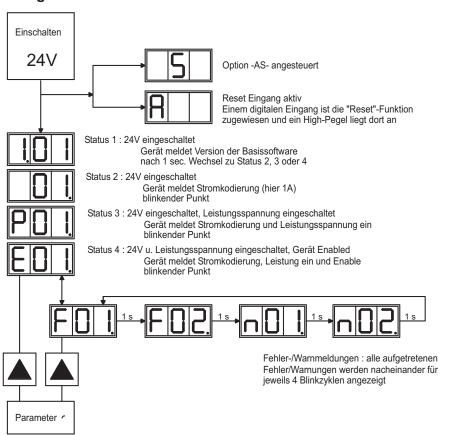
Codierung der Baudrate im LED-Display:

Codierung	Baudrate in kBit/s	Codierung	Baudrate in kBit/s
0	10	5	250
1	20	6	333
2	50	7	500
3	100	8	666
4	125	9	800
		10	1000

9.4.3 Anschlussbeispiel Mehrachsensystem


9.5 Tastenbedienung / LED-Display

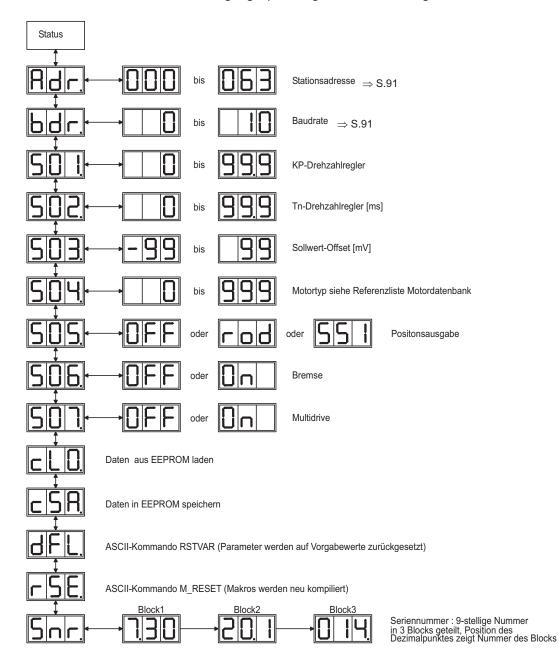
Im Folgenden sind die zwei möglichen Strukturen des Bedienmenüs und die Bedienung mit der Tastatur auf der Frontplatte dargestellt. Im Normalfall stellt Ihnen der SERVOSTAR nur das Standardmenü zur Verfügung. Wenn Sie den Verstärker über das detaillierte Menü bedienen möchten, so müssen Sie beim Einschalten der 24V-Versorgungsspannung die rechte Taste gedrückt halten.


9.5.1 Bedienung

Sie können mit den beiden Tasten folgende Funktionen ausführen:

Tastensymbol	Funktionen
	einmal drücken: ein Menüpunkt nach oben, Zahl um eins vergrößern zweimal schnell hintereinander drücken: Zahl um zehn vergrößern
	einmal drücken: ein Menüpunkt nach unten, Zahl um eins verkleinern zweimal schnell hintereinander drücken: Zahl um zehn verkleinern
	rechte Taste gedrückt halten und linke Taste zusätzlich drücken : zur Zahleneingabe, Return-Funktion

9.5.2 Statusanzeige



9.5.3 Struktur des Standardmenüs

9.5.4 Struktur des detaillierten Menüs

Beim Einschalten der 24V-Versorgungsspannung die rechte Taste gedrückt halten.

9.6 Fehlermeldungen

Auftretende Fehler werden im LED-Display an der Frontplatte über eine Fehlernummer kodiert angezeigt. Alle Fehlermeldungen führen zum Öffnen des BTB-Kontaktes und zum Abschalten der Verstärker-Endstufe (Motor wird drehmomentfrei). Die Motorhaltebremse wird aktiviert.

Nummer	Bezeichnung	Erklärung			
E/S/A/P	Status Meldungen	Statusmeldungen, kein Fehler, siehe S.93			
	Status Meldung	Verstärker aktualisiert die Startkonfiguration			
-	Status Meldung	Statusmeldung, kein Fehler, Programmiermodus			
E04*	Kühlkörpertempera-	Kühlkörpertemperatur zu hoch.			
F01*	tur	Grenzwert vom Hersteller auf 80°C eingestellt			
E00*	l'ile a na na a na na a na na	Überspannung im Zwischenkreis.			
F02*	Überspannung	Grenzwert abhängig von der Netzspannung			
F03*	Schleppfehler	Meldung des Lagereglers			
F04	Rückführung	Kabelbruch, Kurzschluss, Erdschluss			
F05*	Untorononnung	Unterspannung im Zwischenkreis.			
L03	Unterspannung	Grenzwert vom Hersteller auf 100V eingestellt			
F06	Motortemperatur	Temperaturfühler defekt oder Motortemperatur zu hoch.			
	ivioloriemperatur	Grenzwert vom Hersteller auf 145°C eingestellt			
F07	Spannungen intern	interne Versorgungsspannungen fehlerhaft			
F08*	Überdrehzahl	Motor geht durch, Drehzahl unzulässig hoch			
F09	EEPROM	Checksummenfehler			
F10	Flash-EPROM	Checksummenfehler			
F11	Bremse	Kabelbruch, Kurzschluss, Erdschluss			
F12	Motorphase	Motorphase fehlt (Leitungsbruch o.ä.)			
F13*	Innentemperatur	Innentemperatur zu hoch			
F14	Endstufe	Fehler in der Leistungsendstufe			
F15	I²t max.	l²t-Maximalwert überschritten			
F16*	Netz-BTB	Fehlen von 2 oder 3 Phasen der Einspeisung			
F17	A/D-Konverter	Fehler in der analog-digital-Wandlung, oft hervorgeru-			
		fen durch sehr starke elektromagnetische Störungen			
F18	Bremsschaltung	Bremsschaltung defekt oder Einstellung fehlerhaft			
F19*	Netzphase	Fehlen von einer Phase der Einspeisung			
	•	(Abschaltbar für den Betrieb an zwei Phasen)			
F20	Slotfehler	Slotfehler (Hardwarefehler der Erweiterungskarte)			
F21	Handlingfehler	Softwarefehler der Erweiterungskarte			
F22	Erdschluss	Kurzschluss zwischen einer Motorphase und Erde			
F23	CAN Bus aus	Schwerwiegender CAN Bus Kommunikationsfehler			
F24	Warnung	Warnungsanzeige wird als Fehler gewertet			
F25		Kommutierungsfehler			
F26	Endschalter	Referenzfahrt-Fehler (Hardware-Endschalter erreicht)			
F27	Option AS	Fehler bei der Bedienung der Option -AS-, Eingänge AS-ENABLE und ENABLE wurden gleichzeitig gesetzt			
		Sollwertsprung bei der Vorgabe der externen Posi-			
F28	Externe Trajektorie	tions-Trajektorie überschreitet den maximal zulässigen			
. 20	Externe Trajektorie	Wert.			
F29	Slot Fehler	abhängig von Erweiterungskarte, siehe Online-Hilfe			
F30	Emergency Timeout	Timeout Not-Stopp			
F31	Makro	Makro Programm Fehler			
F32	Systemfehler	Systemsoftware reagiert nicht korrekt			
. 0=	0,0001111011101	- 5 John Collegior Holle Rollon			

^{* =} Diese Fehlermeldungen können ohne Reset mit dem ASCII-Commando CLRFAULT zurückgesetzt werden. Wenn nur einer dieser Fehler anliegt und der RESET-Button oder die I/O-Funktion RESET verwendet wird, wird ebenfalls nur das Kommando CLRFAULT ausgeführt.

INFO

Weitere Informationen zu den Meldungen finden Sie in der ASCII Objektreferenz (<u>Online Hilfe</u>), siehe Parameter <u>ERRCODE</u>. Informationen zur Behebung der Störungen finden Sie im Abschnitt "Trouble Shooting" der Online-Hilfe.

9.7 Warnmeldungen

Auftretende Störungen, die nicht zum Abschalten der Verstärker-Endstufe führen (BTB-Kontakt bleibt geschlossen) , werden im LED-Display an der Frontplatte über eine Warnungsnummer kodiert angezeigt.

Nummer	Bezeichnung	Erklärung		
E/S/A/P	Status Meldungen	Statusmeldungen, kein Fehler, siehe S.93		
	Status Meldung	Verstärker aktualisiert die Startkonfiguration		
-	Status Meldung	Statusmeldung, kein Fehler, Programmiermodus		
n01	²t	l²t-Meldeschwelle überschritten		
n02	Bremsleistung	Eingestellte Bremsleistung erreicht		
n03*	S_fehl	Eingestelltes Schleppfehler-Fenster überschritten		
n04*	Ansprechüberwachung	Ansprechüberwachung (Feldbus) aktiv		
n05	Netzphase	Netzphase fehlt		
n06*	SW-Endschalter 1	Software-Endschalter 1 untererschritten		
n07*	SW-Endschalter 2	Software-Endschalter 2 überschritten		
n08	Fahrauftrag_Fehler	Ein fehlerhafter Fahrauftrag wurde gestartet		
n09	Kein Referenzpunkt	Beim Fahrauftrag-Start war kein Referenzpunkt gesetzt		
n10*	PSTOP	Endschalter PSTOP betätigt		
n11*	NSTOP	Endschalter NSTOP betätigt		
n12	Motordefaultwerte geladen	Nur ENDAT oder HIPERFACE®: Unterschiedliche Motornummern in Encoder und Verstärker gespeichert, Motordefaultwerte wurden geladen		
n13*	Slot Warnung	24V Versorgung der I/O-Erweiterungskarte fehlt		
n14	SinCos-Feedback	SinCos Kommutierung (wake & shake) nicht vollzo- gen, wird bei freigegebenem Verstärker und aus- geführtem wake & shake gelöscht		
n15	Tabellenfehler	Geschwindigkeits-Strom Tabelle INXMODE 35 Fehler		
n16	Summenwarnung	Summenwarnung für n17 bis n31		
n17	Feldbus Sync	Synchronisation wird generiert wenn der Antrieb auf Synchronisation (SYNCSRC) eingestellt ist aber nicht synchronisiert ist (z.B. CAN-Sync).		
n18	Multiturn Überlauf	Bei Multiturn-Encoder wurde die maximale Anzahl von Umdrehungen überschritten		
n19	Rampe beim Fahrsatz wurde begrenzt	Wertebereichüberschreitung bei Fahrsatzdaten		
n20	GMT Daten	Fehlerhafte "Graphical Motion Task" Daten		
n21	Warnung durch SPS Programm	Bedeutung geht aus Programm hervor		
n22	Motortemperatur über- schritten	Die Warnung gibt dem Anwender Reaktionsmöglichkeiten, bevor der Fehler "Motorübertemperatur" zur Reglerabschaltung führt		
n23-n31	Reserve	Reserve		
n32	Firmware Betaversion	Firmwareversion ist nicht freigegeben		

^{* =} Diese Warnmeldungen führen zu einem geführten Stillsetzen des Antriebs (Bremsung mit Notrampe)

INFO

Weitere Informationen zu den Meldungen finden Sie in der ASCII Objektreferenz (<u>Online Hilfe</u>), siehe Parameter <u>STATCODE</u>. Informationen zur Behebung der Störungen finden Sie im Abschnitt "Trouble Shooting" der Online-Hilfe.

9.8 Beseitigung von Störungen

Abhängig von den Bedingungen in Ihrer Anlage können vielfältige Ursachen für die auftretende Störung verantwortlich sein. Bei Mehrachssystemen können weitere versteckte Fehlerursachen vorliegen.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

INFO

Detaillierte Beschreibung von Fehlerursachen und Tipps zur Behebung finden Sie im Abschnitt "Trouble-Shooting" in der <u>Online Hilfe</u> der Inbetriebnahme-Software.

Unsere Applikationsabteilung hilft Ihnen bei Problemen weiter.

Fehler	mögliche Fehlerursachen	Maßnahmen
Fehlermeldung Kommunika- tionsstörung	 falsche Leitung verwendet Leitung auf falschen Steckplatz am Servoverstärker oder PC gesteckt falsche PC-Schnittstelle gewählt 	Nullmodem-Leitung verwenden Leitung auf richtige Steckplätze am Servoverstärker und am PC stecken Schnittstelle korrekt anwählen
Motor dreht nicht	 Servoverstärker nicht freigegeben Sollwertleitung unterbrochen Motorphasen vertauscht Bremse ist nicht gelöst Antrieb ist mechanisch blockiert Motorpolzahl nicht korrekt eingestellt Rückführung falsch eingestellt 	 — ENABLE-Signal anlegen — Sollwertleitung prüfen — Motorphasen korrekt auflegen — Bremsenansteuerung prüfen — Mechanik prüfen — Parameter Motorpolzahl einstellen — Rückführung korrekt einstellen
Motor schwingt	 Verstärkung zu hoch (Drehzahlregler) Abschirmung Rückführleitung unterbrochen AGND nicht verdrahtet 	 Kp (Drehzahlregler) verkleinern Rückführleitung erneuern AGND mit CNC-GND verbinden
Antrieb meldet Schleppfehler	I _{rms} bzw. I _{peak} zu klein einge- stellt Sollwertrampe zu groß	 I_{rms} bzw. I_{peak} vergrößern (Motordaten beachten !) SW-Rampe +/- verkleinern
Motor wird zu heiß	— I _{rms} /I _{peak} zu groß eingestellt	— I _{rms} /I _{peak} verkleinern
Antrieb zu weich	 Kp (Drehzahlregler) zu klein Tn (Drehzahlregler) zu groß PID-T2 zu groß T-Tacho zu groß 	 Kp (Drehzahlregler) vergrößern Tn (Drehzahlregler), Motordefaultwert PID-T2 verkleinern T-Tacho verkleinern
Antrieb läuft rauh Achse driftet	 Kp (Drehzahlregler) zu groß Tn (Drehzahlregler) zu klein PID-T2 zu klein T-Tacho zu klein Offset bei analoger Sollwertvorgabe schlecht abgeglichen 	 Kp (Drehzahlregler) verkleinern Tn (Drehzahlregler), Motordefaultwert PID-T2 vergrößern T-Tacho vergrößern SW-Offset (Analog I/O) abgleichen
bei Sollwert=0V	AGND nicht mit CNC-GND der Steuerung verbunden	AGND und CNC-GND verbin- den

10 Erweiterungskarten

Informationen über Verfügbarkeit und Bestellnummern finden Sie auf Seite 115.

10.1 Leitfaden zur Installation der Erweiterungskarten

- Schrauben Sie die Abdeckung des Optionsschachtes mit einem geeigneten Schraubendreher heraus.
- Achten Sie darauf, dass keine Kleinteile (Schrauben o.ä.) in den geöffneten Optionsschacht fallen.

- Schieben Sie die Erweiterungskarte vorsichtig und ohne sie zu verkanten in die vorgesehenen Führungsschienen.
- Drücken Sie die Erweiterungskarte fest in den Schacht, bis die Frontabdeckung auf den Befestigungslaschen aufliegt. So ist ein sicherer Kontakt der Steckverbindung gewährleistet.
- Drehen Sie die Schrauben der Frontabdeckung in die Gewinde in den Befestigungslaschen.

10.2 Erweiterungskarte -I/O-14/08-

Dieses Kapitel beschreibt die I/O-Erweiterungskarte -I/O-14/08-. Beschrieben werden nur die zusätzlichen Eigenschaften, die die Erweiterungskarte dem SERVOSTAR 640/670 verleiht. Die Erweiterungskarte ist bei Anlieferung in den Optionsschacht des Servoverstärkers eingeschoben und verschraubt, wenn Sie den Servoverstärker mit der Erweiterungskarte bestellt haben. Die -I/O-14/08- stellt Ihnen 14 zusätzliche digitale Eingänge und 8 digitale Ausgänge zur Verfügung. Die Funktion der Ein- und Ausgänge ist festgelegt. Die Ein-/Ausgänge werden verwendet, um im Servoverstärker gespeicherte Fahraufträge zu starten und Meldungen des integrierten Lagereglers in der übergeordneten Steuerung auszuwerten.

11/2018

Die Funktion der Eingänge und Meldeausgänge entspricht den Funktionen, die den digitalen I/O's an Stecker X3 des Servoverstärkers zugeordnet werden können. Die Versorgung der Erweiterungskarte mit 24V DC erfolgt aus der Steuerung. Alle Ein- und Ausgänge sind durch Optokoppler getrennt und potentialfrei gegenüber dem Servoverstärker.

10.2.1 Frontansicht

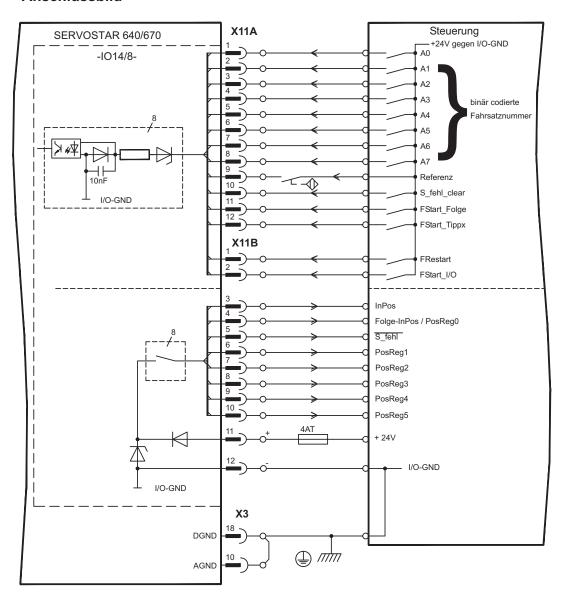
10.2.2 Technische Daten

Steuereingänge	24V / 7mA , SPS-kompatibel, EN 61131		
Meldeausgänge	24V / max. 500mA , SPS-kompatibel, EN 61131		
Versorgungseingänge nach EN 61131	24V (1836V) / 100mA plus Summenstrom der Ausgänge (abhängig von der Eingangsschaltung der Steuerung). Die 24VDC Versorgungsspannung muss von einer potentialgetrennten (z.B. mit Trenntransformator) Spannungsquelle zur Verfügung gestellt werden.		
Absicherung (extern)	4 AT		
Stecker	MiniCombicon, 12-pol., kodiert an PIN1 bzw. 12		
Leitung	Daten - bis 50m Länge : 22 x 0,5mm², nicht geschirmt, Versorgung - 2 x 1mm², Spannungsverluste beachten		
Wartezeit zwischen 2 Fahraufträgen	abhängig von der Reaktionszeit der Steuerung		
Adressierzeit (min.)	4ms		
Startverzögerung (max.)	2ms		
Reaktionszeit digitale Ausgänge	max. 10ms		

10.2.3 Leuchtdioden

Neben den Klemmen der Erweiterungskarte sind zwei Leuchtdioden angebracht. Die grüne Leuchtdiode meldet das Vorhandensein der erforderlichen 24V Hilfsspannung für die Erweiterungskarte. Die rote Leuchtdiode meldet Fehler in den Ausgängen der Erweiterungskarte (Überlastung der Schalterbausteine und Kurzschluss).

10.2.4 Fahrsatznummer anwählen (Beispiel)


Fahrsatznummer	A7	A6	A5	A4	А3	A2	A1	A0
binär 1010 1110	1	0	1	0	1	1	1	0
dezimal 174	128	-	32	-	8	4	2	-

10.2.5 Steckerbelegung

Stec	ker X1	1A	
Pin	Dir	Funktion	Beschreibung
1	Ein	A0	Fahrsatznummer, LSB
2	Ein	A1	Fahrsatznummer, 2 ¹
3	Ein	A2	Fahrsatznummer, 2 ²
4	Ein	A3	Fahrsatznummer, 2 ³
5	Ein	A4	Fahrsatznummer, 2 ⁴
6	Ein	A5	Fahrsatznummer, 2 ⁵
7	Ein	A6	Fahrsatznummer, 2 ⁶
8	Ein	A7	Fahrsatznummer, MSB
9	Ein	Referenz	Abfrage des Referenzschalters. Wird ein digitaler Eingang am Grundgerät als Referenzeingang verwendet, wird der Eingang an der I/O-Erweiterungskarte nicht ausgewertet.
10	Ein	s_fehl_clear	Warnungen Schleppfehler (n03) / Ansprechüberwachung (n04) löschen
11	Ein	FStart_Folge	Der im Fahrsatz definierte Folgeauftrag mit der Einstellung "Starten über I/O" wird gestartet. Die Zielposition des aktuellen Fahrsatzes muß erreicht sein, bevor der Folgefahrauftrag gestartet werden kann. Der Folgefahrsatz kann auch mit einem entsprechend definierten digitalen Eingang am Grundgerät gestartet werden.
12	Ein	FStart_Tipp x	Starten der Einricht-Betriebsart "Konstante Geschwindigkeit". "x" ist die im Servoverstärker gespeicherte Geschwindigkeit für die Funktion KONSTANTE GESCHWINDIGKEIT. Eine steigende Flanke startet die Bewegung, eine fallende Flanke bricht die Bewegung ab.

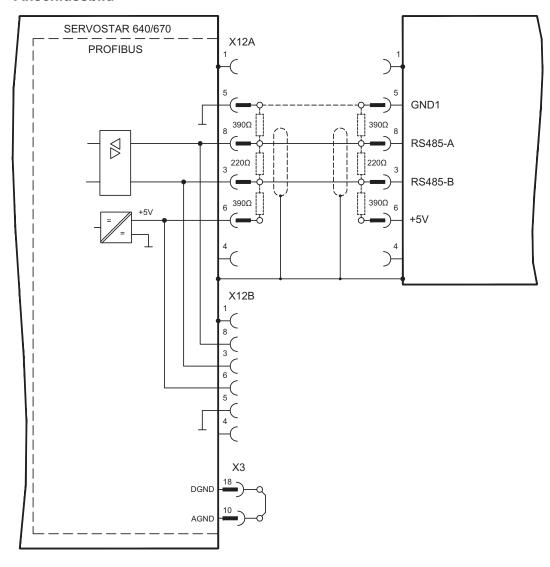
Stec	ker X1	1B	
1	Ein	FRestart	Setzt den zuletzt abgebrochenen Fahrauftrag fort. Der Fahrauftrag kann auch mit einem entsprechend definierten digitalen Eingang am Grundgerät fortgesetzt werden.
2	Ein	FStart_I/O	Start des Fahrauftrages, der über A0-A7 adressiert ist. Die digitale Funktion gleichen Namens im Grundgerät startet den Fahrauftrag, der an den digitalen Eingängen des Grundgerätes adressiert ist.
3	Aus	InPosition	Das Erreichen der Zielposition (In-Positions-Fenster) eines Fahrauftrages wird durch Ausgabe eines High-Signals gemeldet. Ein Kabelbruch wird nicht erkannt.
4	Aus	Folge-InPos	Der Start jedes Fahrauftrages in einer automatisch nachein- ander ausgeführten Folge von Fahraufträgen wird durch In- vertieren des Ausgangssignals gemeldet. Beim Start des ers- ten Fahrauftrages innerhalb der Fahrauftrags-Folge gibt der Ausgang ein Low-Signal aus. Die Meldeform kann über AS- CII-Kommandos variiert werden.
		PosReg 0	Nur über ASCII-Kommandos einstellbar.
5	Aus	S_fehl	Das Verlassen des eingestellten Schleppfehler-Fensters wird mit einem Low-Signal gemeldet.
6	Aus	PosReg1	Default: SW Endschalter 1, wird mit High-Signal gemeldet.
7	Aus	PosReg2	Default: SW Endschalter 2, wird mit High-Signal gemeldet.
8	Aus	PosReg3	Nur über ASCII-Kommandos einstellbar.
9	Aus	PosReg4	Nur über ASCII-Kommandos einstellbar.
10	Aus	PosReg5	Nur über ASCII-Kommandos einstellbar
11	Vers.	24V DC	Spannungsversorgung für Ausgangssignale
12	Vers.	I/O-GND	digital-GND der Steuerung

10.2.6 Anschlussbild

INFO AGND und DGND an Stecker X3 müssen gebrückt werden

10.3 Erweiterungskarte -PROFIBUS-

Dieses Kapitel beschreibt die PROFIBUS Erweiterungskarte für den SERVOSTAR 640/670. Informationen über der Funktionsumfang und das Softwareprotokoll finden Sie in der Beschreibung "Kommunikationsprofil PROFIBUS DP". Die Spannungsversorgung der Erweiterungskarte findet durch den Servoverstärker statt.


10.3.1 Frontansicht

10.3.2 Anschlusstechnik

Leitungsauswahl, Leitungsführung, Schirmung, Busanschlussstecker, Busabschluss und Laufzeiten finden Sie in den "Aufbaurichtlinien PROFIBUS-DP/FMS" der PROFIBUS-Nutzerorganisation PNO.

10.3.3 Anschlussbild

INFO AGND und DGND an Stecker X3 müssen gebrückt werden

10.4 Erweiterungskarte -SERCOS-

Dieses Kapitel beschreibt die SERCOS Erweiterungskarte für den SERVOSTAR 640/670. Informationen über der Funktionsumfang und das Softwareprotokoll finden Sie in unserer Beschreibung "IDN Reference Guide SERCOS".

10.4.1 Frontansicht

10.4.2 Leuchtdioden

Zeigt an, ob SERCOS Telegramme korrekt empfangen werden. In der finalen Kommunikationsphase 4 sollte diese LED glimmen, da zyklisch Telegramme empfangen werden.

Zeigt an ob SERCOS Telegramme gesendet werden. In der finalen Kommunikationsphase 4 sollte diese LED glimmen, da zyklisch Telegramme gesendet werden. Überprüfen Sie die Stationsadressen in der Steuerung und im Servoverstärker, wenn:

- die LED in SERCOS Phase 1 nie leuchtet
- die Achse nicht in Betrieb genommen werden kann, obwohl RT zyklisch leuchtet. Zeigt eine fehlerhafte bzw. gestörte SERCOS Kommunikation an.

Leuchtet diese LED stark, ist die Kommunikation stark gestört bzw. gar nicht vorhanden. Überprüfen Sie die SERCOS Übertragungsgeschwindigkeit auf der Steuerung und im Servoverstärker (BAUDRATE) und den Anschluss der LWL.

ERR

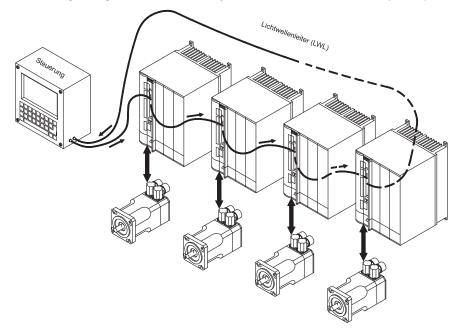
TT

Glimmt diese LED, zeigt dies eine leicht gestörte SERCOS Kommunikation an, die optische Sendeleistung ist nicht korrekt der Leitungslänge angepasst. Überprüfen Sie die Sendeleistung der physikalisch vorherigen SERCOS Station. Die Sendeleistung der Servoverstärker können Sie auf der Bildschirmseite SERCOS der Inbetriebnahmesoftware DRIVE.EXE über die Anpassung an die Leitungslänge mit dem Parameter LWL-Länge einstellen.

10.4.3 Anschlusstechnik

Verwenden Sie für den Lichtwellenleiter(LWL) - Anschluss ausschließlich SERCOS Komponenten gemäß SERCOS Standard IEC 61491.

Empfangsdaten


Der LWL mit den Empfangsdaten für den Antriebs in der Ringstruktur wird mit einem F-SMA Stecker an X13 angeschlossen

Sendedaten

Schließen Sie den LWL für den Datenausgang mit einem F-SMA Stecker an X14 an.

10.4.4 Anschlussbild

Aufbau des ringförmigen SERCOS Bussystems mit Lichtwellenleiter (Prinzipdarstellung).

INFO

AGND und DGND an Stecker X3 müssen gebrückt werden

10.4.5 Ändern der Stationsadresse

Die Adresse des Antriebs kann zwischen 0 und 63 gesetzt werden. Mit Adresse=0 wird der Antrieb als Verstärker im SERCOS-Ring zugewiesen. Einstellen der Stationsadresse:

Tasten auf der Frontseite des Servoverstärkers

Sie können die Adresse durch Tasteneingaben am Verstärker ändern (S. 94).

Inbetriebnahmesoftware

Sie können die Adresse auch mit der Inbetriebnahmesoftware, ändern (siehe Online-Hilfe). Im Bildschirmfenster "Terminal" können Sie alternativ den Befehl **ADDR #** eingeben, wobei # für die neue Adresse des Antriebs steht.

10.4.6 Ändern von Baudrate und optischer Leistung

Bei nicht korrekt eingestellter Baudrate kommt keine Kommunikation zustande. Mit dem Parameter **SBAUD** # können Sie die Baudrate einstellen, wobei # für die Baudrate steht. Wenn die optische Leistung nicht richtig eingestellt ist, treten Fehler in der Telegramm-übertragung auf und die rote LED am Antrieb leuchtet. Während der normalen Kommunikation blinken die grünen LEDs für Senden und Empfangen schnell, wodurch der Eindruck entsteht, dass die jeweilige LED leuchtet.

Mit dem Parameter **SLEN** # können Sie den optischen Bereich für ein standardisiertes 1 mm² Glasfaserkabel festlegen, wobei # die Länge des Kabels in Metern angibt.

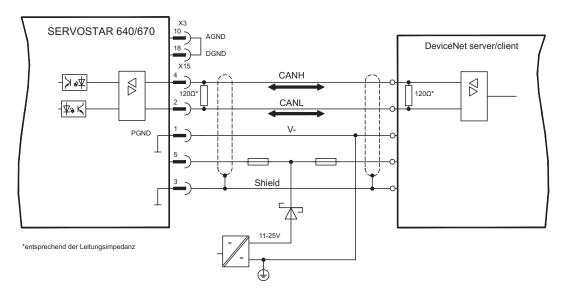
SI	BAUD		SLEN
2	2 Mbaud	0	sehr kurze Verbindung
4	4 Mbaud	1< 15	Länge der Verbindung mit einem 1 mm² Kunststoffkabel
8	8 MBaud	15< 30	Länge der Verbindung mit einem 1 mm² Kunststoffkabel
16	16 MBaud	≥ 30	Länge der Verbindung mit einem 1 mm² Kunststoffkabel

Inbetriebnahmesoftware

Sie können die Parameter mit der Inbetriebnahmesoftware, Bildschirmseite "SERCOS", ändern. Weitere Informationen finden Sie in der Online-Hilfe. Im Bildschirmfenster "Terminal" können Sie alternativ die Befehle **SBAUD** # und **SLEN** # eingeben.

10.5 Erweiterungskarte - DEVICENET -

Dieses Kapitel beschreibt die DeviceNet Erweiterungskarte für den SERVOSTAR 640/670. Informationen zu Funktionsumfang und Softwareprotokoll finden Sie in unserem Handbuch "DeviceNet Kommunikationsprofil".


10.5.1 Frontansicht

10.5.2 Anschlusstechnik

Leitungsauswahl, Leitungsführung, Schirmung, Busanschlussstecker, Busabschluss und Laufzeiten werden in der "DeviceNet Spezifikation, Band I, II, Ausgabe 2.0", herausgegeben von der ODVA, beschrieben.

10.5.3 Anschlussbild

INFO

AGND und DGND an Stecker X3 müssen gebrückt werden

10.5.4 Kombinierte Modul-/Netzwerkstatus-LED

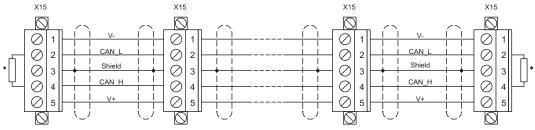
LED	Bedeutung:
aus	Das Gerät ist nicht online Das Gerät hat den Dup MAC_ID-Test noch nicht abgeschlossen.
	- Das Gerät ist eventuell nicht eingeschaltet.
grün	Das Gerät läuft im normalen Zustand, ist online, und die Verbindungen sind im etablierten Zustand. Das Gerät ist einem Master zugewiesen.
blinkt grün	Das Gerät läuft im normalen Zustand, ist online, und die Verbindungen sind nicht im etablierten Zustand. - Das Gerät hat den Dup_MAC_ID-Test bestanden und ist online, aber die Verbindungen zu anderen Knoten sind nicht hergestellt. - Dieses Gerät ist keinem Master zugewiesen. - Fehlende, unvollständige oder falsche Konfiguration
blinkt rot	Behebbarer Fehler und/oder mindestens eine E/A-Verbindung befindet sich im Wartestatus.
rot	 - Am Gerät ist ein nicht behebbarer Fehler aufgetreten; es muss eventuell ausgetauscht werden. - Ausgefallenes Kommunikationsgerät. Das Gerät hat einen Fehler festgestellt, der die Kommunikation mit dem Netzwerk verhindert (z. B. doppelte MAC ID oder BUSOFF).

10.5.5 Einstellen der Stationsadresse (Geräteadresse)

Die Stationsadresse des Servoverstärker kann auf drei Arten eingestellt werden:

- Stellen Sie die Drehschalter an der Vorderseite der Erweiterungskarte auf einen Wert zwischen 0 und 63. Jeder Schalter stellt eine Dezimalziffer dar. Um Adresse 10 für den Antrieb einzustellen, setzen Sie MSD auf 1 und LSD auf 0.
- Stellen Sie die Drehschalter an der Vorderseite der Erweiterungskarte auf einen Wert größer als 63. Sie können die Stationsadresse jetzt anhand der ASCII-Befehle DNMACID x, SAVE, COLDSTART einstellen, wobei "x" für die Stationsadresse steht.
- Stellen Sie die Drehschalter an der Vorderseite der Optionskarte auf einen Wert größer als 63. Sie können die Stationsadresse jetzt über das DeviceNet-Objekt (Klasse 0x03,Attribut 1) einstellen. Dies geschieht mit Hilfe eines DeviceNet-Inbetriebnahmewerkzeugs. Sie müssen den Parameter im nichtflüchtigen Speicher (Klasse 0x25, Attribut 0x65) sichern und den Antrieb nach der Änderung der Adresse erneut starten.

10.5.6 Einstellen der Übertragungsgeschwindigkeit


Sie können die DeviceNet-Übertragungsgeschwindigkeit auf drei unterschiedliche Arten einstellen:

- Stellen Sie den Drehschalter für die Baudrate an der Vorderseite der Optionskarte auf einen Wert zwischen 0 und 2, 0 = 125 KBit/s, 1 = 250 KBit/s, 2 = 500 KBit/s.
- Stellen Sie die Drehschalter an der Vorderseite der Optionskarte auf einen Wert größer als 2. Sie können die Baudrate jetzt anhand der Terminal-Befehle DNBAUD x, SAVE, COLDSTART einstellen, wobei "x" für 125, 250 oder 500 steht.
- Stellen Sie die Drehschalter an der Vorderseite der Optionskarte auf einen Wert größer als 2. Sie können die Baudrate jetzt anhand des DeviceNet-Objekts (Klasse 0x03, Attribut 2) auf einen Wert zwischen 0 und 2 einstellen. Dies geschieht mit Hilfe eines DeviceNet-Inbetriebnahmewerkzeugs. Sie müssen den Parameter im nichtflüchtigen Speicher (Klasse 0x25, Attribut 0x65) sichern und den Antrieb nach der Änderung der Baudrate erneut starten.

10.5.7 Buskabel

Gemäß ISO 898 sollten Sie ein Buskabel mit einer charakteristischen Impedanz von 120Ω verwenden. Die für eine zuverlässige Kommunikation nutzbare Kabellänge wird mit ansteigender Übertragungsgeschwindigkeit reduziert. Die folgenden, von uns gemessenen Werte können als Richtwerte verwendet werden. Sie sollten jedoch nicht als Grenzwerte ausgelegt werden.

Allgemeines Merkmal	Spezifikation
Bitraten	125 KBit, 250 KBit, 500 KBit
Abstand mit dicker Sammelschiene	500 m bei 125 KBaud 250 m bei 250 KBaud 100 m bei 500 KBaud
Anzahl Knoten	64
Signalgebung	CAN
Modulation	Grundbandbreite
Medienkopplung	Gleichstromgekoppelter Differentialsende-/Empfangsbetrieb
Isolierung	500 V (Option: Optokoppler auf Knotenseite des Transceivers)
Typische Differenzial- eingangsimpedanz (re- zessiver Status)	Shunt C = 5pF Shunt R = $25K\Omega$ (power on)
Min. Differenzialein- gangsimp. (rezessiver Status)	Shunt C = 24pF + 36 pF/m der dauerhaft befestigten Abzweigleitung Shunt R = $20K\Omega$
Absoluter, maximaler Spannungsbereich	-25 V bis +18 V (CAN_H, CAN_L). Die Spannungen an CAN_H und CAN_L sind auf den IC-Massepin des Transceivers bezogen. Diese Spannung ist um den Betrag höher als die V-Klemme, der dem Spannungsabfall an der Schottky-Diode entspricht (max. 0,6V).

 * entsprechend der Leitungsimpedanz ca. 120 Ω

Erdung:

Um Erdungsschleifen zu verhindern, darf das DeviceNet-Netzwerk nur an einer Stelle geerdet sein. Die Schaltkreise der physischen Schicht in allen Geräten sind auf das V-Bussignal bezogen. Der Anschluss zur Masse erfolgt über die Busstromversorgung. Der Stromfluss zwischen V- und Erde darf über kein anderes Gerät als über eine Stromversorgung erfolgen.

Bustopologie:

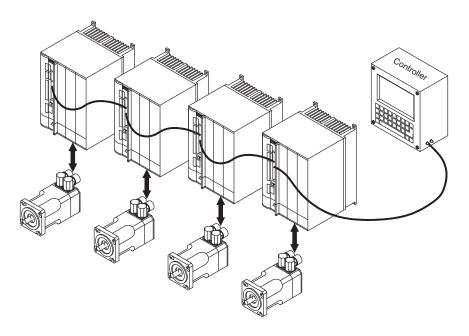
Das DeviceNet-Medium verfügt über eine lineare Bustopologie. Auf jeder Seite der Verbindungsleitung sind Abschlusswiderstände erforderlich. Abzweigleitungen bis zu je 6 m sind zulässig, so dass mindestens ein Knoten verbunden werden kann.

Abschlusswiderstände:

Für DeviceNet muss an jeder Seite der Verbindungsleitung ein Abschlusswiderstand installiert werden. Widerstandsdaten: 120Ω , 1% Metallfilm, 1/4 W

10.6 Erweiterungskarte -ETHERCAT-

Dieses Kapitel beschreibt die EtherCAT Erweiterungskarte für den SERVOSTAR 640/670. Informationen zu Funktionsumfang und Softwareprotokoll finden Sie in der EtherCAT Dokumentation. Diese Erweiterungskarte ermöglicht den Anschluss des Servoverstärkers an das EtherCAT Netzwerk über RJ-45 Buchsen (IN- und OUT-Ports).


10.6.1 Frontansicht

10.6.2 LEDs

LED	Funktion
ERROR	flackert = Boot Fehler blinkt ständig = Allgemeiner Konfigurationsfehler blinkt einmal = Unerlaubter Statuswechsel blinkt zweimal = Watchdog Timeout aus = kein aktueller Fehler
RUN	an = Gerät hat Status OPERATIONAL blinkt ständig = Gerät hat Status PRE-OPERATIONAL blinkt einmal = Gerät hat Status SAFE-OPERATIONAL aus = Gerät hat Status INIT
ACT IN	an = Verbunden, aber nicht aktiv an X20A (in) flackert = Verbunden und aktiv an X20A (in) aus = nicht verbunden an X20A (in)
ACT OUT	an = Verbunden, aber nicht aktiv an X20B (out) flackert = Verbunden und aktiv an X20B (out) aus = nicht verbunden an X20B (out)

10.6.3 Anschlussbild

INFO

AGND und DGND an Stecker X3 müssen gebrückt werden

10.7 Erweiterungskarte -SYNQNET-

Dieses Kapitel beschreibt die SynqNet Erweiterungskarte. Informationen zu Funktionsumfang und Softwareprotokoll finden Sie in der SynqNet Dokumentation.

10.7.1 Frontansicht

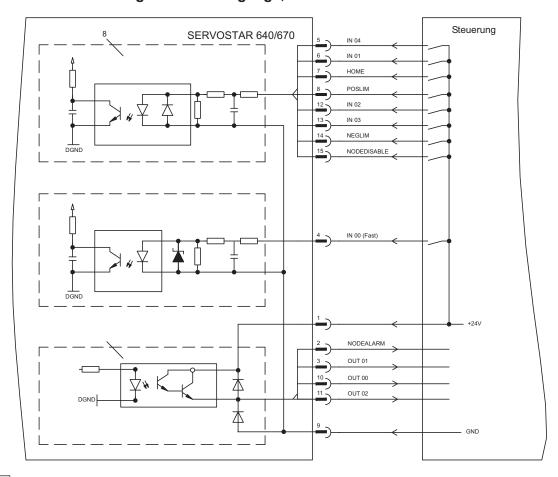
10.7.2 NODE ID Schalter

Mit Hilfe der hexadezimalen Drehschalter können Sie das obere und untere Byte der Node ID getrennt einstellen. SynqNet verlangt für korrekte Funktion im Netzwerk nicht zwingend eine Adresse, in einigen Anwendungen kann dies jedoch sinnvoll sein, um von einer Applikations-Software erkannt zu werden.

10.7.3 Node LED Tabelle

LED#	Name	Funktion	
LED4 arriva	LINK IN	An = Empfang gültig (IN port)	
LED1, grün	LINK_IIN	Aus = nicht gültig, power off oder reset.	
		An = Netzwerk zyklisch	
LED2, gelb	CYCLIC	Blinkt = Netzwerk nicht zyklisch	
		Aus = power off oder reset	
LED2 arrite	LINK_OUT	An = Empfang gültig (OUT port)	
LED3, grün		Aus = nicht gültig, power off oder reset.	
		An = Repeater Ein, Netzwerk zyklisch	
LED4, gelb	REPEATER	Blinkt = Repeater Ein, Netzwerk nicht zyklisch	
		Aus = Repeater Aus, power off oder reset	

10.7.4 SyngNet Anschlüsse, Stecker X21B/C (RJ-45)


Anschluss an das SynqNet Netzwerk über RJ-45 Buchsen (IN- und OUT-Ports) mit integrierten LEDS.

10.7.5 Digitale Ein-/Ausgänge, Stecker X21A (SubD 15 polig, Buchse)

Eingänge (In): 24V (20...28V), optisch entkoppelt, ein high-speed Eingang (Pin 4) Ausgänge (Out): 24V, optisch entkoppelt, Darlington Treiber

Belegungstabelle Stecker X21A (SubD 15 polig)				
Pin	Тур	Beschreibung		
1	In	+24V	Spannungsversorgung	
2	Out	NODEALARM	Meldet Problem bei diesem Node	
3	Out	OUT_01	digitaler Ausgang	
4	In	IN_00 (fast)	Capture Eingang (schnell)	
5	In	IN_04	digitaler Eingang	
6	In	IN_01	digitaler Eingang	
7	In	HOME	Referenzschalter	
8	In	POSLIM	Endschalter pos. Drehrichtung	
9	In	GND	Spannungsversorgung	
10	Out	OUT_00	digitaler Ausgang	
11	Out	OUT_02	digitaler Ausgang	
12	In	IN_02	digitaler Eingang	
13	In	IN_03	digitaler Eingang	
14	In	NEGLIM	Endschalter neg. Drehrichtung	
15	ln	NODEDISABLE	Deaktiviert Node	

10.7.6 Anschlussbild digitale Ein-/Ausgänge, Stecker X21A

INFO

AGND und DGND an Stecker X3 müssen gebrückt werden.

10.8 Erweiterungsmodul -2CAN-

Der Stecker X6 des SERVOSTAR ist belegt mit den Signalen des RS232 Interface und des CAN Interface. Dadurch ist die Pinbelegung der Schnittstellen nicht standardgemäß und Sie benötigen ein Spezialkabel, wenn Sie beide Schnittstellen gleichzeitig verwenden wollen.

Das Erweiterungsmodul -2CAN- bietet Ihnen die Schnittstellen auf getrenten SubD-Steckern. Die beiden CAN-Stecker (CAN-IN und CAN-OUT) sind parallel verdrahtet. Über den Schalter kann ein Terminierungswiderstand (120 Ω) für den CAN-Bus zugeschaltet werden, wenn der SERVOSTAR den Busabschluss bildet.

10.8.1 Einbau

Das Modul wird auf den Optionschacht geschraubt, nachdem Sie die Abdeckung entfernt haben (siehe S. 98):

INFO

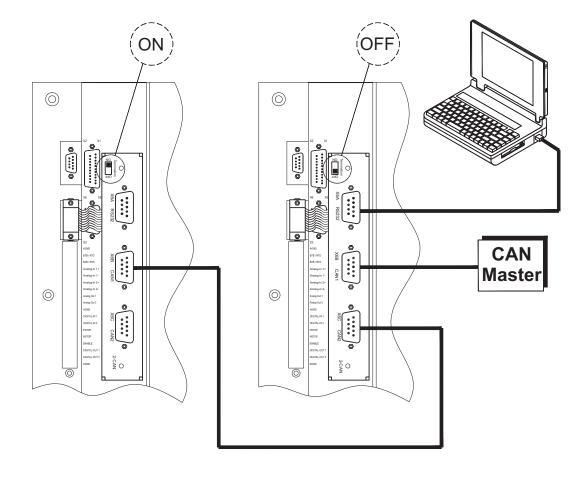
- Schrauben Sie die Abstandsbolzen in die Befestigungslaschen des Optionsschachtes
- Setzen Sie das Erweiterungsmodul auf den Optionsschacht auf.
- Drehen Sie die Schrauben in die Gewinde der Abstandsbolzen
- Stecken Sie die SubD9-Buchse in Stecker X6 am SERVOSTAR

10.8.2 Frontansicht

10.8.3 Anschlusstechnik

Für die RS232- und die CAN-Schnittstelle können Standardkabel mit Abschirmung verwendet werden.

INFO


Wenn der Servoverstärker das letzte Gerät am CAN-Bus ist, muss der Schalter für die Busterminierung auf ON geschaltet werden.

Ansonsten muss der Schalter auf OFF geschaltet sein (Auslieferungszustand).

10.8.4 Anschlussbelegung

RS232		CAN1=CAN2	
X6A Pin	Signal	X6B=X6C Pin	Signal
1	Vcc	1	
2	RxD	2	CAN-Low
3	TxD	3	CAN-GND
4		4	
5	GND	5	
6		6	
7		7	CAN-High
8		8	
9		9	

10.8.5 Anschlussbild

11	Anhang	
11.1	Glossar	
В	Bremsschaltung	wandelt überschüssige, vom Motor beim Bremsen rückgespeiste Energie über den Bremswiderstand in Wärme um (früher: Ballastschaltung).
С	Clock	Taktsignal
	counts	interne Zählimpulse, 1 Impuls=1/2 ²⁰ Umdr ⁻¹
D	Dauerleistung der Bremsschaltung	mittlere Leistung, die in der Bremsschaltung umgesetzt werden kann
	Disable	Wegnahme des ENABLE-Signals (0V oder offen)
	Drehzahlregler	regelt die Differenz zwischen Drehzahlsollwert SW und Drehzahlistwert zu 0 aus. Ausgang : Stromsollwert
E	Eingangsdrift	Temperatur- und alterungsbedingte Verände- rungen eines analogen Eingangs
	Enable	Freigabesignal für den Servoverstärker (+24V)
	Enddrehzahl	Maximalwert für die Drehzahlnormierung bei ±10V
	Endschalter	Begrenzungsschalter im Verfahrweg der Maschine; Ausführung als Öffner
	Erdschluss	Elektrisch leitende Verbindung zwischen einer Phase und PE
	Erweiterungskarte	im Servoverstärker eingebaute Baugruppe, die spezielle Interfacevarianten für den Anschluss an die übergeordnete Steuerung zur Verfügung stellen.
F	Fahrsatz	Datenpaket mit allen Lageregelungsparametern, die für einen Fahrauftrag erfoderlich sind
	Feldbusinterface	CANopen, PROFIBUS, SERCOS, EtherCAT
G	Gleichtaktspannung	Störamplitude, die ein analoger Eingang (Differenzeingang) ausregeln kann
	GRAY-Format	spezielle Form der binären Zahlendarstellung
Н	Haltebremse	Bremse im Motor, die nur bei Motorstillstand eingesetzt werden darf
I	I²t-Schwelle	Überwachung des tatsächlich abgeforderten Effektivstroms Irms
	Impulsleistung der Bremsschaltung	maximale Leistung, die in der Bremsschaltung umgesetzt werden kann
	Inkrementalgeber-Interface	Positionsmeldung über 2 um 90° versetzte Signale, keine absolute Positionsausgabe
	Interface	Schnittstelle
	Ipeak, Spitzenstrom	Effektivwert des Impulsstroms
	Irms, Effektivstrom	Effektivwert des Dauerstroms
K	Kp, P-Verstärkung	proportionale Verstärkung eines Regelkreises
	Kurzschluss	hier: elektrisch leitende Verbindung zwischen zwei Phasen

L	Lageregler	regelt die Differenz zwischen Lagesollwert und Lageistwert zu 0 aus.
	Later and baller	Ausgang : Drehzahlsollwert
	Leistungsschalter	Anlagenschutz mit Phasenausfallüberwachung
М	Maschine	Gesamtheit miteinander verbundener Teile oder Vorrichtungen, von denen mindestens eine beweglich ist
	Mehrachssysteme	Maschine mit mehreren autarken Antriebsachsen
	Monitorausgang	Ausgabe eines analogen Messwertes
N	Netzfilter	Vorrichtung zur Ableitung von Störungen auf den Leitungen der Leistungsversorgung nach PE
	Nullimpuls	wird von Inkrementalgebern einmal pro Umdre- hung ausgegeben, dient der Nullung der Maschine
0	Optokoppler	optische Verbindung zwischen zwei elektrisch unabhängigen Systemen
Р	P-Regler	Regelkreis, der rein proportional arbeitet
	Phasenverschiebung	Kompensation der Nacheilung zwischen elektromagnetischem und magnetischem Feld im Motor
	PID-Regler	Regelkreis mit proportionalem, integralen und differentiellen Verhalten
	PID-T2	Filterzeitkonstante für den Drehzahlreglerausgang
	Potentialtrennung	elektrisch entkoppelt
R	Reset	Neustart des Mikroprozessors
	Resolver-Digital-Converter	Umwandlung der analogen Resolversignale in digitale Informationen
	Reversierbetrieb	Betrieb mit periodischem Drehrichtungswechsel
	Ringkern	Ferritringe zur Störunterdrückung
	ROD-Interface	inkrementelle Positionsausgabe
S	Servoverstärker	Stellglied zur Regelung von Drehmoment, Drehzahl und Lage eines Servomotors
	SSI-Interface	Zyklisch absolute, serielle Positionsausgabe
	Stromregler	regelt die Differenz zwischen Stromsollwert und Stromistwert zu 0 aus. Ausgang : Leistungsausgangs-Spannung
	SW-Rampen	Begrenzung der Änderungsgeschwindigkeit des Drehzahlsollwertes SW
Т	Tachospannung	zum Drehzahl-Istwert proportionale Spannung
	Thermoschutz	in die Motorwicklung eingebautes temperatur- empfindliches Bauteil (meist PTC)
	Tn, I-Nachstellzeit	Integral-Anteil des Regelkreises
Z	Zwischenkreis	gleichgerichtete und geglättete Leistungsspannung

11.2 Bestellnummern

Bestellnummern für Zubehör wie Kabel, Ballastwiderstände, Netzteile usw. finden Sie im Zubehörhandbuch.

11.2.1 Servoverstärker

Artikel	EU Bestellnummer	US Bestellnummer
SERVOSTAR 640	DE-91419	S64001-NA
SERVOSTAR 670	DE-91955	S67001-NA

^{*=} NA bedeutet: ohne eingebaute Erweiterungskarte

11.2.2 Erweiterungskarten

Artikel	EU Bestellnummer	US Bestellnummer
Erweiterungskarte DeviceNet	DE-103571	OPT-DN
Erweiterungskarte PROFIBUS DP	DE-90056	OPT-PB
Erweiterungskarte SERCOS	DE-90879	OPT-SE
Erweiterungskarte -I/0-14/08-	DE-90057	OPT-EI
Erweiterungskarte EtherCAT	DE-108350	OPT-EC
Erweiterungskarte SynqNet	DE-200073	OPT-SN
Erweiterungsmodul 2CAN	DE-101174	nicht erhältlich

11.2.3 Gegenstecker

Artikel	EU Bestellnummer	US Bestellnummer
Gegenstecker X3 (I/O)	DE-101695	CON-S6X3a
Gegenstecker X4 (24V)	DE-92143	CON-S6X4a
Gegenstecker X10 (AS)	DE-101696	CON-S6X10
Gegenstecker X15 (DeviceNet)	DE-106368	CON-S6X15

Diese Seite wurde bewusst leer gelassen.

11.3 Index

!	24V-Hilfsspannung, Schnittstelle	46	G	Geräuschemission	
Α	Ableitstrom	33	Н	Hall Schnittstelle	
	Abschirmung		1.	Hardware-Voraussetzungen	
	Anschlussplan	44		Inkrementalgeber, Schnittstelle	57
	Installation	38		Erweiterungskarten	98
	Absicherung extern	24		Hardware	39
	Anlaufsperre -AS	. /1		Software	
	Anzugsmomente, Stecker	24	K	Kapazitätsmodule	47
	Aufstellhöhe	24		Kürzel	
	Ausgänge	CC	L	LED-Display	
	Änalog-Out 1/2			Lagerung	14
	DIGI-OUT 1/2	68		Leiterquerschnitte	25 19
	Außerbetriebnahme	15	М	Masse-Zeichen	
В	BISS Schnittstelle		""	Master-Slave	
	BTB/RTO			Mehrachsensystem, Anschlussbeispiel	92
	Baudrate	91		Monitorausgänge	66
	Installation	34		Montage	35 40
	techn.Daten	24		Motorhaltebremse	26
	Bestellnummern	115	N	NOT-AUS	32
	Inbetriebnahmesoftware	. 79		NSTOP, Schnittstelle	67
	Servoverstärker	12		Netzanschluss, Schnittstelle	46
	Bremse, siehe auch Motorhaltebremse Bremsschaltung			Normen.	
	Bremswiderstand	21	0	Optische Leistung	
	Schnittstelle ext		Р	PC-Anschluss	
_	techn.Daten			PC-Leitung	69 67
С	CANopen-Interface			Puls-Richtung, Schnittstelle	61
	CE-Konformität	56	Q	Quickstart, Schnelltest	
D	Demontage	15	R	ROD, Schnittstelle	63
	Devicenet Buskabel			RS232/PC, Schnittstelle	69
E	Ein-/Ausschaltverhalten			Reinigung	15 16
	Einbaulage	24		Resolver, Schnittstelle	51
	Einbauort	34	s	SSI, Schnittstelle	
	ĎIGĬ-IN 1/2	67		Schutzart	24
	Freigabe (Enable)	67		Schwingungen	24
	NSTOP PSTOP	67		Sicherheitshinweise	54
	analoge Sollwerte	65		Sollwerteingänge	65
	Encoder			Sonstige Betriebssysteme	80
	Schnittstelle	53 58		Standards	. 0
	Encoder-Emulationen			Stationsadresse	91
	Endschaltereingänge			Steckerbelegung	43
	Entsorgung	16	₊		
	Anschlussplan	44	T	Tastenbedienung	
	Installation			Transport	
	Erweiterungskarten 2CAN	111		Typenschild	19
	DeviceNet	105		Typenschlüssel	
	EtherCat	108	ľ	Umgebungstemperatur	
	I/O-14/08	99	V	Verdrahtung	
	PROFIBUS			Verpackung	
	SERCOS	103		Verschmutzungsgrad	
_	SynqNet			Versorgungsspannung	
F	FI-Schutzschalter		w	Warnmeldungen	
	Fehlermeldungen	95		Wartung	

Vertrieb und Applikation

Wir bieten Ihnen einen kompetenten und schnellen Service. Wählen Sie das zuständige regionale Vertriebsbüro in Deutschland oder kontaktieren Sie den europäischen, asiatischen oder nordamerikanischen Kundendienst.

Deutschland

KOLLMORGEN Europe GmbH

Vertriebs- & Applikationszentrum Nord

Pempelfurtstraße 1 D-40880 Ratingen

Internet www.kollmorgen.com/de-de Archiv www.wiki-kollmorgen.eu Support https://kdn.kollmorgen.com/ E-Mail vertrieb.nord@kollmorgen.com

Tel.: +49 (0)2102 - 9394 - 0 Fax: +49 (0)2102 - 9394 - 3315

KOLLMORGEN Europe GmbH Vertriebs- & Applikationszentrum Süd

Brückenfeldstr. 26/1 D-75015 Bretten

Internet www.kollmorgen.com/de-de E-Mail vertrieb.sued@kollmorgen.com Tel.: +49 (0)2102 - 9394 - 2850 Fax: +49 (0)2102 - 9394 - 3317

KOLLMORGEN
DE Website

Europäisches Datei Archiv

KOLLMORGEN Europe GmbH

Vertriebsbüro Süd Hölzlestraße 31 D-72336 Balingen

Internet www.kollmorgen.com/de-de E-Mail vertrieb.sued@kollmorgen.com Tel.: +49 (0)2102 - 9394 - 2806 Fax: +49 (0)2102 - 9394 - 3317

Europa

KOLLMORGEN

Internet www.kollmorgen.com/en-gb Archive www.wiki-kollmorgen.eu Support https://kdn.kollmorgen.com/ E-Mail technik@kollmorgen.com Tel.: +49 (0)2102 - 9394 - 0 Fax: +49 (0)2102 - 9394 - 3155

Nordamerika KOLLMORGEN

Internet www.kollmorgen.com/en-us Support https://kdn.kollmorgen.com/ E-Mail support@kollmorgen.com Tel.: +1 - 540 - 633 - 3545 Fax: +1 - 540 - 639 - 4162

Südamerika

KOLLMORGEN

Internet www.kollmorgen.com/pt-br Support https://kdn.kollmorgen.com/ E-Mail contato@kollmorgen.com Tel.: +55 11 4615 - 6300

KOLLMORGEN

European File Archive

KOLLMORGEN US Website

KOLLMORGEN

Developer Network

KOLLMORGEN Brazil Website

KOLLMORGEN
CN Website

Asien

KOLLMORGEN

Internet www.kollmorgen.cn

Support https://kdn.kollmorgen.com/ E-Mail sales.china@kollmorgen.com

Tel: +86 - 400 661 2802

KOLLMORGEN